Advertisement

Using Dental Mesowear and Microwear for Dietary Inference: A Review of Current Techniques and Applications

  • Jeremy L. GreenEmail author
  • Darin A. Croft
Chapter
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Abstract

Mesowear and microwear analyses use data from worn tooth surfaces as proxies for feeding ecology. Mesowear is based on gross dental wear and forms over months to years. The method was originally developed for ungulates but has recently been expanded to other groups, at least preliminarily. Dental microwear has been investigated for well over half a century and continues to be refined. It forms over days to weeks. Wide varieties of techniques are currently used for microwear analysis, all of which require attention to detail. Among these techniques, three-dimensional microwear texture analysis has the greatest potential for accurately reconstructing feeding ecology, yet the “recipe” for analyzing microwear data remains a work in progress. Combining mesowear and microwear with one another and other dietary proxies can permit robust inferences about the feeding ecology of extinct species.

Keywords

Dentition Enamel Feeding ecology Microscopy Paleodiet Tooth wear 

References

  1. Andrews, P., & Hixson, S. (2014). Taxon-free methods of palaeoecology. Annales Zoologici Fennici, 51, 269–284.Google Scholar
  2. Arman, S. D., Ungar, P. S., Brown, C. A., DeSantis, L. R. G., Schmidt, C., & Prideaux, G. J. (2016). Minimizing inter-microscope variability in dental microwear texture analysis. Surface Topography: Metrology and Properties, 4, 024007.Google Scholar
  3. Baines, D. C., Purnell, M. A., & Hart, P. J. B. (2014). Tooth microwear formation rate in Gaterosteus aculeatus. Journal of Fish Biology, 84, 1582–1589.Google Scholar
  4. Borrero-Lopez, O., Pajares, A., Constantino, P. J., & Lawn, B. R. (2015). Mechanics of microwear traces in tooth enamel. Acta Biomaterialia, 14, 146–153.Google Scholar
  5. Bowyer, R. T., McKenna, S. A., & Shea, M. E. (1983). Seasonal changes in coyote food habits as determined by fecal analysis. The American Midland Naturalist, 109, 266–273.Google Scholar
  6. Butler, P. M. (1952). The milk molars of Perissodactyla, with remarks on molar occlusion. Proceedings of the Zoological Society of London, 121, 777–817.Google Scholar
  7. Butler, K., Louys, J., & Travouillon, K. (2014). Extending dental mesowear analyses to Australian marsupials, with applications to six Plio-Pleistocene kangaroos from southeast Queensland. Palaeogeography, Palaeoclimatology, Palaeoecology, 408, 11–25.Google Scholar
  8. Calandra, I., & Merceron, G. (2016). Dental microwear texture analysis in mammalian ecology. Mammal Review, 46, 215–228.Google Scholar
  9. Calandra, I., Schulz, E., Pinnow, M., Krohn, S., & Kaiser, T. M. (2012). Teasing apart the contributions of hard dietary items on 3D dental microtextures in primates. Journal of Human Evolution, 63, 85–98.Google Scholar
  10. Christensen, H. B. (2014). Similar associations of tooth microwear and morphology indicate similar diet across marsupial and placental mammals. PLoS ONE, 9, e102789.Google Scholar
  11. Conover, W. J., & Iman, R. L. (1981). Rank transformations as a bridge between parametric and nonparametric statistics. The American Statistician, 35, 124–129.Google Scholar
  12. Constantino, P. J., Borrero-Lopez, O., Pajares, A., & Lawn, B. R. (2015). Simulation of enamel wear for reconstruction of diet and feeding behavior in fossil mammals: a micromechanics approach. BioEssays, 38, 89–99.Google Scholar
  13. Coombs, M., & Semprebon, G. (2005). The diet of chalicotheres (Mammalia, Perissodactyla) as indicated by low magnification stereoscopic microwear analysis. Journal of Vertebrate Paleontology, 25, 47A.Google Scholar
  14. Croft, D. A. (1999). Placentals: South American ungulates. In R. Singer (Ed.), Encyclopedia of Paleontology (pp. 890–906). Chicago: Fitzroy-Dearborn Publishers.Google Scholar
  15. Croft, D. A., & Weinstein, D. (2008). The first application of the mesowear method to endemic South American ungulates (Notoungulata). Palaeogeography, Palaeoclimatology, Palaeoecology, 269, 103–114.Google Scholar
  16. Curran, S. C. (2018). Three-dimensional geometric morphometrics in paleoecology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 317–335). Cham: Springer.Google Scholar
  17. Damuth, J., & Janis, C. M. (2014). A comparison of observed molar wear rates in extant herbivorous mammals. Annales Zoologici Fennici, 51, 188–200.Google Scholar
  18. Danowitz, M., Hou, S., Mihlbachler, M., Hastings, V., & Solounias, N. (2016). A combined-mesowear analysis of late Miocene giraffids from North Chinese and Greek localities of the Pikermian Biome. Palaeogeography, Palaeoclimatology, Palaeoecology, 449, 194–204.Google Scholar
  19. DeSantis, L. R. G. (2016). Dental microwear textures: reconstructing diets of fossil mammals. Surface Topography: Metrology and Properties, 4, 023002.Google Scholar
  20. DeSantis, L. R. G., Scott, J. R., Schubert, B. W., Donohue, S. L., McCray, B. M., Van Stolk, C. A., et al. (2013). Direct comparisons of 2D and 3D dental microwear proxies in extant herbivorous and carnivorous mammals. PLoS ONE, 8, e71428.Google Scholar
  21. Donohue, S. L., DeSantis, L. R. G., Schubert, B. W., & Ungar, P. S. (2013). Was the Giant short-faced bear a hyper-scavenger? A new approach to the dietary study of ursids using dental microwear textures. PLoS ONE, 8, e77531.Google Scholar
  22. Erickson, K. L. (2014). Prairie grass phytolith hardness and the evolution of ungulate hypsodonty. Historical Biology: An International Journal of Paleobiology, 26, 737–744.Google Scholar
  23. Estebaranz, F., Galbany, J., Martínez, L. M., & Pérez-Pérez, A. (2007). 3-D interferometric microscopy applied to the study of buccal enamel microwear. In S. E. Bailey & J.-J. Hublin (Eds.), Dental Perspectives on Human Evolution (pp. 391–403). New York: Springer.Google Scholar
  24. Fortelius, M., & Solounias, N. (2000). Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. American Museum Novitates, 3301, 1–36.Google Scholar
  25. Franz-Odendaal, T. A., Kaiser, T. M., & Bernor, R. L. (2003). Systematics and dietary evaluation of a fossil equid from South Africa. South African Journal of Science, 99, 453–459.Google Scholar
  26. Fraser, D., & Theodor, J. M. (2010). The use of gross dental wear in dietary studies of extinct lagomorphs. Journal of Paleontology, 84, 720–729.Google Scholar
  27. Fraser, D., & Theodor, J. M. (2011). Comparing ungulate dietary proxies using discriminant function analysis. Journal of Morphology, 272, 1513–1526.Google Scholar
  28. Fraser, D., Mallon, J. C., Furr, R., & Theodor, J. M. (2009). Improving the repeatability of low magnification microwear methods using high dynamic range imaging. PALAIOS, 24, 818–825.Google Scholar
  29. Fraser, D., Zybutz, T., Lightner, E., & Theodor, J. M. (2014). Ruminant mandibular tooth mesowear: a new scheme for increasing paleoecological sample sizes. Journal of Zoology, 294, 41–48.Google Scholar
  30. Galbany, J., Martinez, L. M., & Perez-Perez, A. (2004). Tooth replication techniques, SEM imaging and microwear analysis in primates: methodological obstacles. Anthropologie, 42, 5–12.Google Scholar
  31. Galbany, J., Martínez, L. M., López-Amor, H. M., Espurz, V., Hiraldo, O., Romero, A., et al. (2005). Error rates in buccal-dental microwear quantification using scanning electron microscopy. Scanning, 27, 23–29.Google Scholar
  32. Galbany, J., Estebaranz, F., Martínez, L. M., Romera, A., De Juan, J., Turbón, D., et al. (2006). Comparative analysis of dental enamel polyvinylsiloxane impression and polyurethane casting methods for SEM research. Microscopy Research and Technique, 69, 246–252.Google Scholar
  33. Gill, P. G., Purnell, M. A., Crumpton, N., Brown, K. R., Gostling, N. J., Stampanoni, M., et al. (2014). Dietary specializations and diversity in feeding ecology of the earliest stem mammals. Nature, 512, 303–305.Google Scholar
  34. Godfrey, L. R., Semprebon, G. M., Jungers, W. L., Sutherland, M. L., Simons, E. L., & Solounias, N. (2004). Dental use wear in extinct lemurs: evidence of diet and niche differentiation. Journal of Human Evolution, 47, 145–169.Google Scholar
  35. Goodall, R. H., Darras, L. P., & Purnell, M. A. (2015). Accuracy and precision of silicon based impression media for quantitative areal texture analysis. Scientific Reports, 5, 10800.Google Scholar
  36. Gordon, K. D. (1982). A study of microwear on chimpanzee molars: implications for dental microwear analysis. American Journal of Physical Anthropology, 59, 195–215.Google Scholar
  37. Gordon, K. D. (1984a). The assessment of jaw movement direction from dental microwear. American Journal of Physical Anthropology, 63, 77–84.Google Scholar
  38. Gordon, K. D. (1984b). Hominoid dental microwear: complications in the use of microwear analysis to detect diet. Journal of Dental Research, 63, 1043–1046.Google Scholar
  39. Gordon, K. D. (1988). A review of methodology and quantification in dental microwear analysis. Scanning Microscopy, 2, 1139–1147.Google Scholar
  40. Green, J. L. (2009a). Dental microwear in the orthodentine of the Xenarthra (Mammalia) and its use in reconstructing the palaeodiet of extinct taxa: the case study of Nothrotheriops shastensis (Xenarthra, Tardigrada, Nothrotheriidae). Zoological Journal of the Linnean Society, 156, 201–222.Google Scholar
  41. Green, J. L. (2009b). Intertooth variation of orthodentine microwear in armadillos (Cingulata) and tree sloths (Pilosa). Journal of Mammalogy, 90, 768–778.Google Scholar
  42. Green, J. L., & Kalthoff, D. C. (2015). Xenarthran dental microstructure and dental microwear analyses, with new data for Megatherium americanum (Megatheriidae). Journal of Mammalogy, 96, 645–657.Google Scholar
  43. Green, J. L., & Resar, N. A. (2012). The link between dental microwear and feeding ecology in tree sloths and armadillos (Mammalia: Xenarthra). Biological Journal of the Linnean Society, 107, 277–294.Google Scholar
  44. Green, J. L., Semprebon, G. M., & Solounias, N. (2005). Reconstructing the palaeodiet of Florida Mammut americanum via low-magnification stereomicroscopy. Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 34–48.Google Scholar
  45. Grine, F. E. (1986). Dental evidence for dietary differences in Australopithecus and Paranthropus: a quantitative analysis of permanent molar microwear. Journal of Human Evolution, 15, 783–822.Google Scholar
  46. Grine, F. E., Ungar, P. S., & Teaford, M. F. (2002). Error rates in dental microwear quantification using scanning electron microscopy. Scanning, 24, 144–153.Google Scholar
  47. Grine, F. E., Ungar, P. S., Teaford, M. F., & El-Zaatari, S. (2006). Molar microwear in Praeanthropus afarensis: evidence for dietary stasis through time and under diverse paleoecological conditions. Journal of Human Evolution, 51, 297–319.Google Scholar
  48. Haupt, R. J., DeSantis, L. R. G., Green, J. L., & Ungar, P. S. (2013). Dental microwear texture as a proxy for diet in xenarthrans. Journal of Mammalogy, 94, 856–866.Google Scholar
  49. Heiduck, S. (1997). Food choice in Masked titi monkeys (Callicebus personatus melanochir): selectivity or opportunism? International Journal of Primatology, 18, 487–502.Google Scholar
  50. Henton, E., MCorriston, J., Martin, L., & Oches, E.A. (2014). Seasonal aggregation and ritual slaughter: isotopic and dental microwear for cattle herder mobility in the Arabian Neolithic. Journal of Anthropological Archaeology, 33, 119–131.Google Scholar
  51. Higgins, P. (2018). Isotope ecology from biominerals. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 99–120). Cham: Springer.Google Scholar
  52. Hoffman, J. M., Fraser, D., & Clementz, M. T. (2015). Controlled feeding trials with ungulates: a new application of in vivo dental molding to assess the abrasive factors of microwear. The Journal of Experimental Biology, 218, 1538–1547.Google Scholar
  53. Hua, L., Brandt, E. T., Meullenet, J., Zhou, Z., & Ungar, P. S. (2015). Technical note: an in vitro study of dental microwear formation using the BITE Master II chewing machine. American Journal of Physical Anthropology, 158, 769–775.Google Scholar
  54. Kaiser, T. M., & Fortelius, M. (2003). Differential mesowear in occluding upper and lower molars: opening mesowear analysis for lower molars and premolars in hypsodont horses. Journal of Morphology, 258, 67–83.Google Scholar
  55. Kaiser, T. M., & Schulz, E. (2006). Tooth wear gradients in zebras as an environmental proxy – a pilot study. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 103, 187–210.Google Scholar
  56. Kaiser, T. M., & Solounias, N. (2003). Extending the tooth mesowear method to extinct and extant equids. Geodiversitas, 25, 321–345.Google Scholar
  57. Kaiser, T. M., Brasch, J., Castell, J. C., Schulz, E., & Clauss, M. (2009). Tooth wear in captive wild ruminant species differs from that of free-ranging conspecifics. Mammalian Biology – Zeitschrift für Säugetierkunde, 74, 425–437.Google Scholar
  58. Kaiser, T. M., Müller, D. W. H., Fortelius, M., Schulz, E., Codron, D., & Clauss, M. (2013). Hypsodonty and tooth facet development in relation to diet and habitat in herbivorous ungulates: implications for understanding tooth wear. Mammal Review, 43, 34–46.Google Scholar
  59. Kay, R. F., & Covert, H. H. (1983). True grit: a microwear experiment. American Journal of Physical Anthropology, 61, 33–38.Google Scholar
  60. King, T., Andrews, P., & Boz, B. (1999). Effect of taphonomic processes on dental microwear. American Journal of Physical Anthropology, 108, 359–373.Google Scholar
  61. Krueger, K. L., Scott, J. R., Kay, R. F., & Ungar, P. S. (2008). Technical note: dental microwear textures of “Phase I” and “Phase II” facets. American Journal of Physical Anthropology, 137, 485–490.Google Scholar
  62. Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47, 583–621.Google Scholar
  63. Kubo, M. O., & Yamada, E. (2014). The inter-relationship between dietary and environmental properties and tooth wear: comparisons of mesowear, molar wear rate, and hypsodonty index of extant sika deer populations. PLoS ONE, 9, e90745.Google Scholar
  64. Loffredo, L. F., & DeSantis, L. R. G. (2014). Cautionary lessons from assessing dental mesowear observer variability and integrating paleoecological proxies of an extreme generalist Cormohipparion emsliei. Palaeogeography, Palaeoclimatology, Palaeoecology, 395, 42–52.Google Scholar
  65. Lucas, P. W. (2005). Dental functional morphology: How teeth work. New York: Cambridge University Press.Google Scholar
  66. Lucas, P. W., Omar, R., Al-Fadhalah, K., Almusallam, A. S., Henry, A. G., Michael, S., et al. (2013). Mechanisms and causes of wear in tooth enamel: implications for hominin diets. Journal of the Royal Society Interface, 10, 20120923.Google Scholar
  67. Maas, M. C. (1991). Enamel structure and microwear: an experimental study of the response of enamel to shearing force. American Journal of Physical Anthropology, 85, 31–49.Google Scholar
  68. MacFadden, B. J., Solounias, N., & Cerling, T. E. (1999). Ancient diets, ecology, and extinction in 5-million-year-old horses from Florida. Science, 283, 824–827.Google Scholar
  69. Martínez, L. M., & Pérez-Pérez, A. (2004). Post-mortem wear as an indicator of taphonomic processes affecting enamel surfaces on hominin teeth from Laetoli and Olduvai (Tanzania): implications to dietary interpretations. Anthropologie, 42, 37–42.Google Scholar
  70. McAfee, R. K., & Green, J. L. (2015). The role of bite force in the formation of orthodentine microwear in tree sloths (Mammalia: Xenarthra: Folivora): implications for feeding ecology. Archives of Oral Biology, 60, 181–192.Google Scholar
  71. Merceron, G., Blondel, C., De Bonis, L., Koufos, G. D., & Viriot, L. (2005). A new method of dental microwear analysis: application to extant primates and Ouranopithecus macedoniensis (Late Miocene of Greece). PALAIOS, 20, 551–561.Google Scholar
  72. Merceron, G., Escarguel, G., Angibault, J., & Verheyden-Tixier, H. (2010). Can dental microwear textures record inter-individual dietary variations? PLoS ONE, 5, e9542.Google Scholar
  73. Merceron, G., Hofman-Kamińska, E., & Kowalczyk. (2014). 3D dental microwear texture analysis of feeding habits of sympatric ruminants in the Bialowiża Primeval Forest, Poland. Forest Ecology and Management, 328, 262–269.Google Scholar
  74. Mihlbachler, M. C., & Beatty, B. L. (2012). Magnification and resolution in dental microwear analysis using light microscopy. Palaeontologia Electronica, 15, 25A.Google Scholar
  75. Mihlbachler, M. C., & Solounias, N. (2006). Coevolution of tooth crown height and diet in Oreodonts (Merycoidodontidae, Artiodactyla) examined with phylogenetically independent contrasts. Journal of Mammalian Evolution, 13, 11–36.Google Scholar
  76. Mihlbachler, M. C., Rivals, F., Solounias, N., & Semprebon, G. M. (2011). Dietary change and evolution of horses in North America. Science, 331, 1178–1181.Google Scholar
  77. Mihlbachler, M. C., Beatty, B. L., Caldera-Siu, A., Chan, D., & Lee, R. (2012). Error rates and observer bias in dental microwear analysis using light microscopy. Palaeontologia Electronica, 15, 12A.Google Scholar
  78. Mihlbachler, M. C., Campbell, D., Ayoub, M., Chen, C., & Ghani, I. (2016). Comparative dental microwear of ruminant and perissodactyl molars: implications for paleodietary analysis of rare and extinct ungulate clades. Paleobiology, 42, 98–116.Google Scholar
  79. Mills, J. R. E. (1955). Ideal dental occlusion in primates. Dental Practice, 6, 47–61.Google Scholar
  80. Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., et al. (2012). How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 3, 743–756.Google Scholar
  81. Nelson, S., Badgley, C., & Zakem, E. (2005). Microwear in modern squirrels in relation to diet. Palaeontologia Electronica, 8, 14A.Google Scholar
  82. Oliveira, E. V. (2001). Micro-desgaste dentario em alguns Dasypodidae (Mammalia, Xenarthra). Acta Biologica Leopoldensia, 23, 83–91.Google Scholar
  83. Organ, J. M., Ruff, C. B., Teaford, M. F., & Nisbett, R. A. (2006). Do mandibular cross-sectional properties and dental microwear give similar dietary signals? American Journal of Physical Anthropology, 130, 501–507.Google Scholar
  84. Patnaik, R. (2015). Diet and habitat changes among Siwalik herbivorous mammals in response to Neogene and Quaternary climate changes: an appraisal in the light of new data. Quaternary International, 371, 232–243.Google Scholar
  85. Purnell, M. A., Crumpton, N., Gill, P. G., Jones, G., & Rayfield, E. J. (2013). Within-guild dietary discrimination from 3-D textural analysis of tooth microwear in insectivorous mammals. Journal of Zoology, 291, 249–257.Google Scholar
  86. Purnell, M. A., Hart, P. J. B., Baines, D. C., & Bell, M. A. (2006). Quantitative analysis of dental microwear in threespine stickleback: a new approach to analysis of trophic ecology in aquatic vertebrates. Journal of Animal Ecology, 75, 967–977.Google Scholar
  87. Purnell, M., Seehausen, O., & Galis, F. (2012). Quantitative three-dimensional microtextural analyses of tooth wear as a tool for dietary discrimination in fishes. Journal of the Royal Society Interface, 9, 2225–2233.Google Scholar
  88. Rabenold, D., & Pearson, O. M. (2014). Scratching the surface: a critique of Lucas et al. (2013)’s conclusion that phytoliths don’t abrade enamel. Journal of Human Evolution, 74, 130–133.Google Scholar
  89. Rensberger, J. M. (1978). Scanning electron microscopy, of wear and occlusal event in some small herbivores. In P. M. Butler & K. A. Joysey (Eds.), Development, function, and evolution of teeth (pp. 415–438). New York: Academic Press.Google Scholar
  90. Resar, N. A., Green, J. L., & McAfee, R. K. (2013). Reconstructing paleodiet in ground sloths (Mammalia, Xenarthra) using dental microwear analysis. Kirtlandia, 58, 61–72.Google Scholar
  91. Rivals, F., & Semprebon, G. M. (2006). A comparison of the dietary habits of a large sample of the Pleistocene pronghorn Stockoceros onusrosagris from the Papago Springs Cave in Arizona to the modern Antilocapra americana. Journal of Vertebrate Paleontology, 26, 495–500.Google Scholar
  92. Rivals, F., & Solounias, N. (2007). Differences in tooth microwear in populations of caribou (Rangifer tarandus, Ruminatia, Mammalia) and implications to ecology, migration, glaciations and dental evolution. Journal of Mammalian Evolution, 14, 182–192.Google Scholar
  93. Rivals, F., Mihlbachler, M. C., & Solounias, N. (2007). Effect of ontogenetic-age distribution in fossil and modern samples on the interpretation of ungulate paleodiets using the mesowear method. Journal of Vertebrate Paleontology, 27, 763–767.Google Scholar
  94. Rivals, F., Semprebon, G., & Lister, A. (2012). An examination of dietary diversity patterns in Pleistocene proboscideans (Mammuthus, Palaeoloxodon, and Mammut) from Europe and North America as revealed by dental microwear. Quaternary International, 255, 188–195.Google Scholar
  95. Rivals, F., Rindel, D., & Belardi, J. B. (2013). Dietary ecology of extant guanaco (Lama guanicoe) from southern Patagonia: seasonal leaf browsing and its archaeological implications. Journal of Archaeological Science, 40, 2971–2980.Google Scholar
  96. Rivals, F., Prignano, L., Semprebon, G. M., & Lozano, S. (2015). A tool for determining duration of mortality events in archaeological assemblages using extant ungulate microwear. Scientific Reports, 5, 17330.Google Scholar
  97. Rivals, F., Mihlbachler, M. C., Solounias, N., Mol, D., Semprebon, G. M., de Vos, J., et al. (2010). Palaeoecology of the Mammoth Steppe fauna from the late Pleistocene of the North Sea and Alaska: separating species preferences from geographic influence in paleoecological dental wear analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 286, 42–54.Google Scholar
  98. Rose, J. J. (1983). A replication technique for scanning electron microscopy: applications for anthropologists. American Journal of Physical Anthropology, 62, 255–261.Google Scholar
  99. Saarinen, J., Karme, A., Cerling, T., Uno, K., Säilä, L., Kasiki, S. et al. (2015). A new tooth wear-based dietary analysis method for Proboscidea (Mammalia). Journal of Vertebrate Paleontology, e918546.Google Scholar
  100. Sánchez-Hernández, C., Rivals, F., Blasco, R., & Rosell, J. (2016). Tale of two timescales: combining tooth wear methods with different temporal resolutions to detect seasonality of Paleolithic hominin occupational patterns. Journal of Archaeological Research: Reports, 6, 790–797.Google Scholar
  101. Schulz, E., Calandra, I., & Kaiser, T. M. (2010). Applying tribology to teeth of hoofed mammals. Scanning, 32, 162–182.Google Scholar
  102. Schulz, E., Fahlke, J. M., Merceron, G., & Kaiser, T. M. (2007). Feeding ecology of the Chalicotheriidae (Mammalia, Perissodactyla, Ancylopoda). Results from dental micro- and mesowear analyses. Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg, 43, 5–31.Google Scholar
  103. Schulz, E., Piotrowski, V., Clauss, M., Mau, M., Merceron, G., & Kaiser, T. M. (2013). Dietary abrasiveness is associated with variability of microwear and dental surface texture in rabbits. PLoS ONE, 8, e56167.Google Scholar
  104. Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Grine, F. E., Teaford, M. F., et al. (2005). Dental microwear texture analysis reflects diets of living primates and fossil hominins. Nature, 436, 693–695.Google Scholar
  105. Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Childs, B. E., Teaford, M. F., et al. (2006). Dental microwear texture analysis: technical considerations. Journal of Human Evolution, 51, 339–349.Google Scholar
  106. Semprebon, G., & Rivals, F. (2007). Was grass more prevalent in the pronghorn past? An assessment of the dietary adaptations of Miocene and Recent Antilocapridae (Mammalia: Artiodactyla). Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 332–347.Google Scholar
  107. Semprebon, G., Janis, C., & Solounias, N. (2004a). The diets of the Dromomerycidae (Mammalia: Artiodactyla) and their response to Miocene vegetational change. Journal of Vertebrate Paleontology, 24, 427–444.Google Scholar
  108. Semprebon, G., Godfrey, L. R., Solounias, N., Sutherland, M., & Jungers, W. L. (2004b). Can low-magnification stereomicroscopy reveal diet? Journal of Human Evolution, 47, 115–144.Google Scholar
  109. Semprebon, G., Sise, P., & Coombs, M. (2011). Potential bark and fruit browsing as revealed by stereomicrowear analysis of the peculiar clawed herbivores known as chalicotheres (Perissodactyla, Chalicotherioidea). Journal of Mammalian Evolution, 18, 33–55.Google Scholar
  110. Shearer, B. M., Ungar, P. S., McNulty, K. P., Harcourt-Smith, W. E. H., Dunsworth, H. M., & Teaford, M. F. (2015). Dental microwear profilometry of African non-cercopithecoid catarrhines of the Early Miocene. Journal of Human Evolution, 78, 33–43.Google Scholar
  111. Sidorovich, V. E. (2000). Seasonal variation in the feeding habits of riparian mustelids in river valleys of ME Belarus. Acta Theriologica, 45, 233–242.Google Scholar
  112. Solounias, N., & Semprebon, G. (2002). Advances in the reconstruction of ungulate ecomorphology with application to early fossil equids. American Museum Novitates, 3366, 1–49.Google Scholar
  113. Solounias, N., Tariq, M., Hou, S., Danowitz, M., & Harrison, M. (2014). A new method of tooth mesowear and a test of it on domestic goats. Annales Zoologici Fennici, 51, 111–118.Google Scholar
  114. Spradley, J. P., Glander, K. E., & Kay, R. F. (2016). Dust in the wind: how climate variables and volcanic dust affect rates of tooth wear in Central American howling monkeys. American Journal of Physical Anthropology, 159, 210–222.Google Scholar
  115. Stokke, S., & du Toit, J. T. (2000). Sex and size related differences in the dry season feeding patterns of elephants in Chobe National Park, Botswana. Ecography, 23, 70–80.Google Scholar
  116. Strait, S. G. (1993). Molar microwear in extant small-bodied faunivorous mammals: an analysis of feature density and pit frequency. American Journal of Physical Anthropology, 92, 63–79.Google Scholar
  117. Strait, S. G. (2014). Myrmecophagous microwear: implications for diet in the homin fossil record. Journal of Human Evolution, 71, 87–93.Google Scholar
  118. Stynder, D. D. (2011). Fossil bovid diets indicate a scarcity of grass in the Langebaanweg E Quarry (South Africa) late Miocene/early Pliocene environment. Paleobiology, 37, 126–139.Google Scholar
  119. Tausch, J., Kullmer, O., & Bromage, T. G. (2015). A new method for determining the 3D spatial orientation of molar microwear. Scanning, 37, 446–457.Google Scholar
  120. Taylor, L. A., Kaiser, T. M., Schwitzer, C., Müller, D. W. H., Codron, D., Clauss, M., et al. (2013). Detecting inter-cusp and inter-tooth wear patterns in rhinocerotids. PLoS ONE, 8, e80921.Google Scholar
  121. Teaford, M. F. (1988). Scanning electron microscope diagnosis of wear patterns versus artifacts on fossil teeth. Scanning Microscopy, 2, 1167–1175.Google Scholar
  122. Teaford, M. F. (1991). Dental microwear: what can it tell us about diet and dental function? In M. A. Kelley & C. S. Larsen (Eds.), Advances in Dental Anthropology (pp. 341–356). New York: Wiley-Liss.Google Scholar
  123. Teaford, M. F. (2007). What do we know and not know about dental microwear and diet? In P. S. Ungar (Ed.), Evolution of the Human Diet: The known, the unknown, and the unknowable (pp. 106–131). Oxford: Oxford University Press.Google Scholar
  124. Teaford, M. F., & Oyen, O. J. (1989). In vivo and in vitro turnover in dental microwear. American Journal of Physical Anthropology, 80, 447–460.Google Scholar
  125. Teaford, M. F., & Walker, A. (1984). Quantitative differences in dental microwear between primate species with different diets and a comment on the presumed diet of Sivapithecus. American Journal of Physical Anthropology, 64, 191–200.Google Scholar
  126. Townsend, K. E., & Croft, D. A. (2008a). Diets of notoungulates from the Santa Cruz Formation, Argentina: new evidence from enamel microwear. Journal of Vertebrate Paleontology, 28, 217–230.Google Scholar
  127. Townsend, K. E., & Croft, D. A. (2008b). Enamel microwear in caviomorph rodents. Journal of Mammalogy, 89, 728–742.Google Scholar
  128. Ulbricht, A., Maul, L. C., & Schulz, E. (2015). Can mesowear analysis be applied to small mammals? A pilot-study on leporines and murines. Mammalian Biology – Zeitschrift für Säugetierkunde, 80, 14–20.Google Scholar
  129. Ungar, P. S. (1995). A semiautomated image analysis procedure for the quantification of dental microwear II. Scanning, 17, 57–59.Google Scholar
  130. Ungar, P. S. (2002). Microware software. Version 4.02. A semiautomated image analysis system for the quantification of dental microwear. Unpublished. Fayetteville.Google Scholar
  131. Ungar, P. S. (2015). Mammalian dental function and wear: a review. Biosurface and Biotribology, 1, 25–41.Google Scholar
  132. Ungar, P. S., & Spencer, M. A. (1999). Incisor microwear, diet, and tooth use in three Amerindian populations. American Journal of Physical Anthropology, 109, 387–396.Google Scholar
  133. Ungar, P. S., Merceron, G., & Scott, R. S. (2007). Dental microwear texture analysis of Varswater bovids and Early Pliocene palaeoenvironments of Langebaanweg, Western Cape Province, South Africa. Journal of Mammalian Evolution, 14, 163–181.Google Scholar
  134. Ungar, P. S., Brown, C. A., Bergstrom, T. S., & Walker, A. (2003). Quantification of dental microwear by tandem scanning confocal microscopy, and scale sensitive fractal analysis. Scanning, 25, 185–193.Google Scholar
  135. Ungar, P. S., Scott, R. S., Scott, J. R., & Teaford, M. (2008). Dental microwear analysis: historical perspectives and new approaches. In J. D. Irish & G. C. Nelson (Eds.), Technique and application in dental anthropology (pp. 389–425). New York: Cambridge University Press.Google Scholar
  136. Vaux, D. (2012). Research methods: know when your numbers are significant. Nature, 492, 180–181.Google Scholar
  137. Walker, A., Hoeck, H. N., & Perez, L. (1978). Microwear of mammalian teeth as an indicator of diet. Science, 201, 908–910.Google Scholar
  138. Winkler, D. A., & Kaiser, T. M. (2011). A case study of seasonal, sexual and ontogenetic divergence in the feeding behaviour of the moose (Alces alces LINNÉ, 1758). Verhandlungen des Naturwissenschaftlichen Vereins Hamburg, 46, 331–348.Google Scholar
  139. Withnell, C. B., & Ungar, P. S. (2014). A preliminary analysis of dental microwear as a proxy for diet and habitat in shrews. Mammalia, 78, 409–415.Google Scholar
  140. Xia, J., Zheng, J., Huang, D., Tian, Z. R., Chen, L., Zhou, Z., et al. (2015). New model to explain tooth wear with implications for microwear formation and diet reconstruction. Proceedings of the National Academy of Sciences, USA, 112, 10669–10672.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of GeologyKent State University at TuscarawasNew PhiladelphiaUSA
  2. 2.Department of AnatomyCase Western Reserve UniversityClevelandUSA

Personalised recommendations