Inferring Mammal Dietary Ecology from Dental Morphology

  • Alistair R. Evans
  • Silvia Pineda-Munoz
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)


The teeth of mammals are the key interface between food and animal – where the rubber meets the road. Mammals generally use their teeth for mechanical processing, thereby facilitating and increasing rates of ingestion, digestion and fermentation. The various foods eaten by mammals respond to bite forces in different ways: some foods fracture easily, while others resist cracks propagating through them. In addition, some foods must be broken down to small pieces for effective energy and nutrient extraction; others merely need to be small enough to swallow. The most effective tooth morphology therefore varies with the mechanical properties of the food. Tooth shape can help to determine the typical food sources consumed by mammals at a given fossil locality, which in turn informs the broad environmental conditions and community structure once present at the site. In this chapter, we examine the ways in which mammalian tooth morphology can serve as an indicator of diet and thus past environments by examining the materials science of foods and the functional morphology of mammal teeth.


Biomechanics Dental topography Diet Dietary mechanical properties Functional morphology Performance testing Teeth 



We are very grateful to Darin Croft, Denise Su and Scott Simpson for the invitation to attend the Paleoecology Symposium in Cleveland and to contribute to this volume. We also thank Felix Marx, David Hocking, Gudrun Evans, Darin Croft and three anonymous reviewers for comments and suggestions that greatly improved this manuscript. Partial support for this research was provided by the Australian Research Council Future Fellowship FT130100968 to A.R.E. and NSF-DEB 1257625 and the Evolution of Terrestrial Ecosystems program at NMNH Smithsonian Institution.


  1. Abler, W. L. (1992). The serrated teeth of tyrannosaurid dinosaurs, and biting structures in other animals. Paleobiology, 18, 161–183.CrossRefGoogle Scholar
  2. Anderson, P. S. L., & LaBarbera, M. (2008). Functional consequences of tooth design: effects of blade shape on energetics of cutting. Journal of Experimental Biology, 211, 3619–3626.CrossRefGoogle Scholar
  3. Barr, W. A. (2018). Ecomorphology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 337–347). Cham: Springer.Google Scholar
  4. Benazzi, S., Kullmer, O., Grosse, I. R., & Weber, G. W. (2011). Using occlusal wear information and finite element analysis to investigate stress distributions in human molars. Journal of Anatomy, 219, 259–272.CrossRefGoogle Scholar
  5. Benazzi, S., Kullmer, O., Grosse, I. R., & Weber, G. W. (2012). Brief communication: comparing loading scenarios in lower first molar supporting bone structure using 3D finite element analysis. American Journal of Physical Anthropology, 147, 128–134.CrossRefGoogle Scholar
  6. Benazzi, S., Grosse, I. R., Gruppioni, G., Weber, G. W., & Kullmer, O. (2014). Comparison of occlusal loading conditions in a lower second premolar using three-dimensional finite element analysis. Clinical Oral Investigations, 18, 369–375.CrossRefGoogle Scholar
  7. Berthaume, M. A. (2014). Tooth cusp sharpness as a dietary correlate in great apes. American Journal of Physical Anthropology, 153, 226–235.CrossRefGoogle Scholar
  8. Berthaume, M. A. (2016). Food mechanical properties and dietary ecology. American Journal of Physical Anthropology, 159, 79–104.CrossRefGoogle Scholar
  9. Berthaume, M. A., Grosse, I. R., Patel, N. D., Strait, D. S., Wood, S., & Richmond, B. G. (2010). The effect of early hominin occlusal morphology on the fracturing of hard food items. Anatomical Record, 293, 594–606.CrossRefGoogle Scholar
  10. Berthaume, M. A., Dumont, E. R., Godfrey, L. R., & Grosse, I. R. (2014). The effects of relative food item size on optimal tooth cusp sharpness during brittle food item processing. Journal of the Royal Society Interface, 11, 20140965.CrossRefGoogle Scholar
  11. Biknevicius, A. R. (1986). Dental function and diet in the Carpolestidae (Primates, Plesiadapiformes). American Journal of Physical Anthropology, 71, 157–171.CrossRefGoogle Scholar
  12. Bock, W. J., & Wahlert, G. V. (1965). Adaptation and the form-function complex. Evolution, 19, 269–299.CrossRefGoogle Scholar
  13. Boyer, D. M. (2008). Relief index of second mandibular molars is a correlate of diet among prosimian primates and other euarchontan mammals. Journal of Human Evolution, 55, 1118–1137.CrossRefGoogle Scholar
  14. Bunn, J. M., Boyer, D. M., Lipman, Y., St Clair, E. M., Jernvall, J., & Daubechies, I. (2011). Comparing Dirichlet normal surface energy of tooth crowns, a new technique of molar shape quantification for dietary inference, with previous methods in isolation and in combination. American Journal of Physical Anthropology, 145, 247–261.CrossRefGoogle Scholar
  15. Callister, W. D., & Rethwisch, D. G. (2014). Materials science and engineering: An introduction (9th ed.). Hoboken, NJ: Wiley.Google Scholar
  16. Candela, A. M., Cassini, G. H., & Nasif, N. L. (2013). Fractal dimension and cheek teeth crown complexity in the giant rodent Eumegamys paranensis. Lethaia, 46, 369–377.CrossRefGoogle Scholar
  17. Chemisquy, M. A., Prevosti, F. J., Martin, G., & Flores, D. A. (2015). Evolution of molar shape in didelphid marsupials (Marsupialia: Didelphidae): analysis of the influence of ecological factors and phylogenetic legacy. Zoological Journal of the Linnean Society, 173, 217–235.CrossRefGoogle Scholar
  18. Crofts, S. B., & Summers, A. P. (2014). How to best smash a snail: the effect of tooth shape on crushing load. Journal of the Royal Society Interface, 11, 20131053.CrossRefGoogle Scholar
  19. Crusafont-Pairó, M., & Truyols-Santonja, J. (1956). A biometric study of the evolution of fissiped carnivores. Evolution, 10, 314–332.CrossRefGoogle Scholar
  20. Curran, S C. (2018). Three-dimensional geometric morphometrics in paleoecology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 317–335). Cham: Springer.Google Scholar
  21. Davis, M., & Pineda Munoz, S. (2016). The temporal scale of diet and dietary proxies. Ecology and Evolution, 6, 1883–1897.CrossRefGoogle Scholar
  22. Dumont, E. R., Strait, S. G., & Friscia, A. R. (2000). Abderitid marsupials from the Miocene of Patagonia: an assessment of form, function, and evolution. Journal of Paleontology, 74, 1161–1172.CrossRefGoogle Scholar
  23. Evans, A. R. (2005). Connecting morphology, function and tooth wear in microchiropterans. Biological Journal of the Linnean Society, 85, 81–96.CrossRefGoogle Scholar
  24. Evans, A. R. (2013). Shape descriptors as ecometrics in dental ecology. Hystrix: The Italian Journal of Mammalogy, 24, 133–140.Google Scholar
  25. Evans, A. R., & Sanson, G. D. (1998). The effect of tooth shape on the breakdown of insects. Journal of Zoology, 246, 391–400.CrossRefGoogle Scholar
  26. Evans, A. R., & Sanson, G. D. (2003). The tooth of perfection: functional and spatial constraints on mammalian tooth shape. Biological Journal of the Linnean Society, 78, 173–191.CrossRefGoogle Scholar
  27. Evans, A. R., & Sanson, G. D. (2005). Correspondence between tooth shape and dietary biomechanical properties in insectivorous microchiropterans. Evolutionary Ecology Research, 7, 453–478.Google Scholar
  28. Evans, A. R., Harper, I. S., & Sanson, G. D. (2001). Confocal imaging, visualization and 3-D surface measurement of small mammalian teeth. Journal of Microscopy, 204, 108–118.CrossRefGoogle Scholar
  29. Evans, A. R., Fortelius, M., Jernvall, J., & Eronen, J. T. (2006). Dental ecomorphology of extant European carnivorans. In E. Żądzińska (Ed.), Current trends in dental morphology research: Full refereed papers from 13th International Symposium on Dental Morphology (pp. 223–232, Vol. 3). Łódź: University of Łódź Press.Google Scholar
  30. Evans, A. R., Wilson, G. P., Fortelius, M., & Jernvall, J. (2007). High-level similarity of dentitions in carnivorans and rodents. Nature, 445, 78–81.CrossRefGoogle Scholar
  31. Famoso, N. A., & Davis, E. B. (2016). On the relationship between enamel band complexity and occlusal surface area in Equids (Mammalia, Perissodactyla). PeerJ, 4, e2181.CrossRefGoogle Scholar
  32. Famoso, N. A., Feranec, R. S., & Davis, E. B. (2013). Occlusal enamel complexity and its implications for lophodonty, hypsodonty, body mass, and diet in extinct and extant ungulates. Palaeogeography, Palaeoclimatology, Palaeoecology, 387, 211–216.CrossRefGoogle Scholar
  33. Famoso, N. A., Davis, E. B., Feranec, R. S., Hopkins, S. S. B., & Price, S. A. (2016). Are hypsodonty and occlusal enamel complexity evolutionarily correlated in ungulates? Journal of Mammalian Evolution, 23, 43–47.CrossRefGoogle Scholar
  34. Fortelius, M. (1985). Ungulate cheek teeth: developmental, functional, and evolutionary interrelations. Acta Zoologica Fennica, 180, 1–76.Google Scholar
  35. Freeman, P. W. (1988). Frugivorous and animalivorous bats (Microchiroptera): dental and cranial adaptations. Biological Journal of the Linnean Society, 33, 249–272.CrossRefGoogle Scholar
  36. Freeman, P. W. (1992). Canine teeth of bats (Microchiroptera): size, shape and role in crack propagation. Biological Journal of the Linnean Society, 45, 97–115.CrossRefGoogle Scholar
  37. Freeman, P. W., & Lemen, C. (2006). Puncturing ability of idealized canine teeth: edged and non-edged shanks. Journal of Zoology, 269, 51–56.CrossRefGoogle Scholar
  38. Green, J. L., & Croft, D. A. (2018). Using dental mesowear and microwear for dietary inference: a review of current techniques and applications. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 53–73). Cham: Springer.Google Scholar
  39. Gregory, W. K. (1920). On the structure and relations of Notharctus, an American Eocene primate. Memoirs of the American Museum of Natural History, New Series, 3, 49–243.Google Scholar
  40. Gregory, W. K. (1922). The origin and evolution of the human dentition. Baltimore: Williams & Wilkins Company.Google Scholar
  41. Hardie, R. P., & Gaye, R. K. (1930). Physica (Vol. v2, The works of Aristotle). Oxford: Clarendon Press.Google Scholar
  42. Hopkins, S. S. B. (2018). Estimation of body size in fossil mammals. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 7–22). Cham: Springer.Google Scholar
  43. Hunter, J. (1771–1803 [1865 post.]). The natural history of the human teeth. London: Robert Hardwicke.Google Scholar
  44. Jernvall, J. (1995). Mammalian molar cusp patterns: developmental mechanisms of diversity. Acta Zoologica Fennica, 198, 1–61.Google Scholar
  45. Jernvall, J., Hunter, J. P., & Fortelius, M. (1996). Molar tooth diversity, disparity, and ecology in Cenozoic ungulate radiations. Science, 274, 1489–1492.CrossRefGoogle Scholar
  46. Jernvall, J., & Selänne, L. (1999). Laser confocal microscopy and geographic information systems in the study of dental morphology. Palaeontologia Electronica, 2.1.3A, 12 pp.Google Scholar
  47. Kay, R. F. (1975). The functional adaptations of primate molar teeth. American Journal of Physical Anthropology, 43, 195–215.CrossRefGoogle Scholar
  48. Kay, R. F. (1978). Molar structure and diet in extant Cercopithecidae. In P. M. Butler & K. A. Joysey (Eds.), Development, function, and evolution of teeth (pp. 309–339). London: Academic Press.Google Scholar
  49. Kay, R. F., & Hiiemae, K. M. (1974). Jaw movement and tooth use in recent and fossil primates. American Journal of Physical Anthropology, 40, 227–256.CrossRefGoogle Scholar
  50. Kieser, J. A. (1990). Human adult odontometrics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  51. King, S. J., Arrigo-Nelson, S. J., Pochron, S. T., Semprebon, G. M., Godfrey, L. R., Wright, P. C., et al. (2005). Dental senescence in a long-lived primate links infant survival to rainfall. Proceedings of the National Academy of Sciences, USA, 102, 16579–16583.CrossRefGoogle Scholar
  52. Klukkert, Z. S., Teaford, M. F., & Ungar, P. S. (2012). A dental topographic analysis of chimpanzees. American Journal of Physical Anthropology, 148, 276–284.CrossRefGoogle Scholar
  53. Krause, D. W. (1982). Jaw movement, dental function, and diet in the Paleocene multituberculate Ptilodus. Paleobiology, 8, 265–281.CrossRefGoogle Scholar
  54. Laws, R. M. (1968). Dentition and ageing of the hippopotamus. East African Wildlife Journal, 6, 19–52.CrossRefGoogle Scholar
  55. Leakey, L. S. B. (1959). A new fossil skull from Olduvai. Nature, 184, 491–493.CrossRefGoogle Scholar
  56. Liu, L., Puolamaki, K., Eronen, J. T., Ataabadi, M. M., Hernesniemi, E., & Fortelius, M. (2012). Dental functional traits of mammals resolve productivity in terrestrial ecosystems past and present. Proceedings of the Royal Society B, 279, 2793–2799.CrossRefGoogle Scholar
  57. Logan, M., & Sanson, G. D. (2002). The effects of tooth wear on the activity patterns of free-ranging koalas (Phascolarctos cinereus Goldfuss). Australian Journal of Zoology, 50, 281–292.CrossRefGoogle Scholar
  58. Lucas, P. W. (1979). The dental-dietary adaptations of mammals. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 1979, 486–512.Google Scholar
  59. Lucas, P. W. (1982). Basic principles of tooth design. In B. Kurtén (Ed.), Teeth: Form, function and evolution (pp. 154–162). New York: Columbia University Press.Google Scholar
  60. Lucas, P. W., & Luke, D. A. (1984). Chewing it over: basic principles of food breakdown. In D. J. Chivers, B. A. Wood, & A. Bilsborough (Eds.), Food acquisition and processing in primates (pp. 283–301). New York: Plenum Press.CrossRefGoogle Scholar
  61. Macho, G. A., & Spears, I. R. (1999). Effects of loading on the biomechanical behavior of molars of Homo, Pan, and Pongo. American Journal of Physical Anthropology, 109, 211–227.CrossRefGoogle Scholar
  62. Osborn, J. W., & Lumsden, A. G. S. (1978). An alternative to “thegosis” and a re-examination of the ways in which mammalian molars work. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 156, 371–392.Google Scholar
  63. Pampush, J. D., Winchester, J. M., Morse, P. E., Vining, A. Q., Boyer, D. M., & Kay, R. F. (2016). Introducing molaR: a new R package for quantitative topographic analysis of teeth (and other topographic surfaces). Journal of Mammalian Evolution, 23, 397–412.CrossRefGoogle Scholar
  64. Pineda-Munoz, S., Lazagabaster, I. A., Evans, A. R., & Alroy, J. (2017). Inferring diet from dental morphology in terrestrial mammals. Methods in Ecology and Evolution, 8, 481–491.CrossRefGoogle Scholar
  65. Pollock, T. I. (2016). Blade Runner: Revealing the function and dietary implications of blade-like serrated teeth in mammals. BSc (Hons) Thesis, Monash University.Google Scholar
  66. Rayfield, E. J. (2007). Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms. Annual Review of Earth and Planetary Sciences, 35, 541–576.CrossRefGoogle Scholar
  67. Reed, D. N. O. (1997). Contour mapping as a new method for interpreting diet from tooth morphology. American Journal of Physical Anthropology, Suppl, 24, 194.Google Scholar
  68. Rensberger, J. M. (1973). An occlusal model for mastication and dental wear in herbivorous mammals. Journal of Paleontology, 47, 515–528.Google Scholar
  69. Rosenberger, A. L., & Kinzey, W. G. (1976). Functional patterns of molar occlusion in platyrrhine primates. American Journal of Physical Anthropology, 45, 281–298.CrossRefGoogle Scholar
  70. Sanson, G. (2006). The biomechanics of browsing and grazing. American Journal of Botany, 93, 1531–1545.CrossRefGoogle Scholar
  71. Schmidt-Kittler, N. (1984). Pattern analysis of occlusal surfaces in hypsodont herbivores and its bearing on morpho-functional studies. Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen series B: palaeontology, geology, physics, chemistry, anthropology, 87, 453–480.Google Scholar
  72. Simpson, G. G. (1933a). Paleobiology of Jurassic mammals. Paleobiologica, 5, 127–158.Google Scholar
  73. Simpson, G. G. (1933b). The “plagiaulacoid” type of mammalian dentition. A study of convergence. Journal of Mammalogy, 14, 97–107.CrossRefGoogle Scholar
  74. Skamniotis, C. G., Patel, Y., Charalambides, M. N., & Elliott, M. (2016). Fracture investigation in starch-based foods. Interface Focus, 6, 20160005.CrossRefGoogle Scholar
  75. Smith, N. E., & Strait, S. G. (2008). PaleoView3D: from specimen to online digital model. Palaeontologia Electronica, 11.2.11A, 17 pp.Google Scholar
  76. Stone, J., & Telford, M. (2005). Fractal dimensions characterizing mammal teeth: a case study involving Elephantidae. Mammal Review, 35, 123–128.CrossRefGoogle Scholar
  77. Strait, S. G. (1993). Differences in occlusal morphology and molar size in frugivores and faunivores. Journal of Human Evolution, 25, 471–484.CrossRefGoogle Scholar
  78. Ungar, P., & Williamson, M. (2000). Exploring the effects of tooth wear on functional morphology: a preliminary study using dental topographic analysis. Palaeontologia Electronica, 3.1.1A, 18 pp.Google Scholar
  79. Van Valkenburgh, B. (1989). Carnivore dental adaptations and diet: a study of trophic diversity within guilds. In J. L. Gittleman (Ed.), Carnivore behavior, ecology, and evolution (pp. 410–436). Ithaca: Cornell University Press.CrossRefGoogle Scholar
  80. Whitenack, L. B., & Motta, P. J. (2010). Performance of shark teeth during puncture and draw: implications for the mechanics of cutting. Biological Journal of the Linnean Society, 100, 271–286.CrossRefGoogle Scholar
  81. Wilson, G. P., Evans, A. R., Corfe, I. J., Smits, P. D., Fortelius, M., & Jernvall, J. (2012). Adaptive radiation of multituberculates before the extinction of dinosaurs. Nature, 483, 457–460.CrossRefGoogle Scholar
  82. Winchester, J. M. (2016). MorphoTester: an open source application for morphological topographic analysis. PLoS ONE, 11, e0147649.CrossRefGoogle Scholar
  83. Winchester, J. M., Boyer, D. M., St Clair, E. M., Gosselin-Ildari, A. D., Cooke, S. B., & Ledogar, J. A. (2014). Dental topography of platyrrhines and prosimians: convergence and contrasts. American Journal of Physical Anthropology, 153, 29–44.CrossRefGoogle Scholar
  84. Wright, B. W. (2005). Craniodental biomechanics and dietary toughness in the genus Cebus. Journal of Human Evolution, 48, 473–492.CrossRefGoogle Scholar
  85. Yamashita, N. (1998). Functional dental correlates of food properties in five Malagasy lemur species. American Journal of Physical Anthropology, 106, 169–188.CrossRefGoogle Scholar
  86. Zuccotti, L. F., Williamson, M. D., Limp, W. F., & Ungar, P. S. (1998). Modeling primate occlusal topography using geographic information systems technology. American Journal of Physical Anthropology, 107, 137–142.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Biological SciencesMonash UniversityMelbourneAustralia
  2. 2.GeosciencesMuseums VictoriaMelbourneAustralia
  3. 3.Evolution of Terrestrial Ecosystems (ETE), Smithsonian InstitutionWashingtonUSA

Personalised recommendations