Functional Morphology of the Postcranial Skeleton

  • Rachel H. DunnEmail author
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)


The field of vertebrate functional morphology grew out of traditional comparative vertebrate morphology. By the 17th century, scientists were modeling the actions of muscles on the skeleton as simple levers, but this remained uncommon until the latter half of the 20th century with the introduction of the concepts of mechanical advantage and speed vs. power systems in limb morphology. Current studies in this field are largely unchanged from those of the late 1900s, the largest steps forward being in the ability to analyze large, multivariate datasets, and quantify complex shapes due to leaps in computing power, and in the development of methods to account for phylogenetic signal in morphological data. This chapter will describe the process of a functional morphological analysis of lever mechanics including: identification of dominant muscles and assessing the action of those muscles based on comparative anatomy, identification of in-levers and out-levers, measurement of lever arms, and statistical analysis.


Functional anatomy Comparative anatomy Biomechanics 


  1. Abramoff, M. D., Magalhaes, P. J., & Ram, S. J. (2004). Image Processing with ImageJ. Biophotonics International, 11, 36–42.Google Scholar
  2. Alexander, R. M. (2003). Principles of animal locomotion. New Jersey: Princeton University Press.Google Scholar
  3. Arnold, C., Matthews, L. J., & Nunn, C. L. (2010). The 10kTrees website: a new online resource for primate phylogeny. Evolutionary Anthropology, 19, 114–118.Google Scholar
  4. Ashley-Ross, M. A., & Gillis, G. B. (2002). A brief history of vertebrate functional morphology. Integrative and Comparative Biology, 42, 183–189.Google Scholar
  5. Atchley, W. R., Gaskins, C. T., & Anderson, D. (1976). Statistical properties of ratios. I. Empirical results. Systematic Biology, 25, 137–148.Google Scholar
  6. Barak, M. M., Lieberman, D. E., Raichlen, D. A., Pontzer, H., Warrener, A. G., & Hublin, J.-J. (2013). Trabecular evidence for a human-like gait in Australopithecus africanus. PLoS ONE, 8, e77687.Google Scholar
  7. Barr, W. A. (2014). Functional morphology of the bovid astragalus in relation to habitat: controlling phylogenetic signal in ecomorphology. Journal of Morphology, 275, 1201–1216.Google Scholar
  8. Barr, W. A. (2018). Ecomorphology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 337–347). Cham: Springer.Google Scholar
  9. Barr, W. A., & Dunn, R. H. (2015). A method of analyzing complex joint surfaces in ecomorphology using slope rasters derived from digital elevation models. American Journal of Physical Anthropology, 156, 78.Google Scholar
  10. Biewener, A. A. (1990). Biomechanics of mammalian terrestrial locomotion. Science, 250, 1097–1103.Google Scholar
  11. Bock, W. J. (1990). From biologische anatomie to ecomorphology. Netherlands Journal of Zoology, 40, 254–277.Google Scholar
  12. Bock, W. J., & von Wahlert, G. (1965). Adaptation and the form-function complex. Evolution, 19, 269–299.Google Scholar
  13. Boyer, D. M., & Seiffert, E. R. (2013). Patterns of astragalar fibular facet orientation in extant and fossil primates and their evolutionary implications. American Journal of Physical Anthropology, 151, 420–447.Google Scholar
  14. Boyer, D. M., Patel, B. A., Larson, S. G., & Stern, J. T., Jr. (2007). Telemetered electromyography of peroneus longus in Varecia variegata and Eulemur rubriventer: implications for the functional significance of a large peroneal process. Journal of Human Evolution, 53, 119–134.Google Scholar
  15. Boyer, D. M., Lipman, Y., St. Clair, E. M., Puente, J., Patel, B. A., Funkhouser, T., et al. (2011). Algorithms to automatically quantify the geometric similarity of anatomical surfaces. Proceedings of the National Academy of Sciences, USA, 108, 18221–18226.Google Scholar
  16. Boyer, D. M., Seiffert, E. R., Gladman, J. T., & Bloch, J. I. (2013). Evolution and allometry of calcaneal elongation in living and extinct primates. PLoS ONE, 8, e67792.Google Scholar
  17. Boyer, D. M., Puente, J., Gladman, J. T., Glynn, C., Mukherjee, S., Yapuncich, G., et al. (2015a). A new fully automated approach for aligning and comparing shapes. Anatomical Record, 298, 249–276.Google Scholar
  18. Boyer, D. M., Yapuncich, G. S., Butler, J. E., Dunn, R. H., & Seiffert, E. R. (2015b). Evolution of postural diversity in primates as reflected by the size and shape of the medial tibial facet of the talus. American Journal of Physical Anthropology, 157, 134–177.Google Scholar
  19. Carrano, M. T. (1999). What, if anything, is a cursor? Categories versus continua for determining locomotor habit in mammals and dinosaurs. Journal of Zoology, London, 247, 29–42.Google Scholar
  20. Connour, J. R., Glander, K., & Vincent, F. (2000). Postcranial adaptations for leaping in primates. Journal of Zoology, London, 251, 79–103.Google Scholar
  21. Croft, D. A., & Anderson, L. C. (2008). Locomotion in the extinct notoungulate Protypotherium. Palaeontologia Electronica, 11.1.1A, 1–20.Google Scholar
  22. Curran, S. C. (2018). Three-dimensional geometric morphometrics in paleoecology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 317–335). Cham: Springer.Google Scholar
  23. Dagosto, M., & Terranova, C. J. (1992). Estimating the body size of Eocene primates: a comparison of results from dental and postcranial variables. International Journal of Primatology, 13, 307–344.Google Scholar
  24. Demes, B., Jungers, W. L., & Selpien, K. (1991). Body size, locomotion, and long bone cross-sectional geometry in indriid primates. American Journal of Physical Anthropology, 86, 537–547.Google Scholar
  25. Dunn, R. H., & Rasmussen, D. T. (2007). Skeletal morphology and locomotor behavior of Pseudotomus eugenei (Rodentia, Paramyinae) from the Uinta Formation, Utah. Journal of Vertebrate Paleontology, 27, 987–1006.Google Scholar
  26. Dunn, R. H., Tocheri, M. W., Orr, C. M., & Jungers, W. L. (2014). Ecological divergence and talar morphology in gorillas. American Journal of Physical Anthropology, 153, 526–541.Google Scholar
  27. Elissamburu, A., & Vizcaíno, S. F. (2004). Limb proportions and adaptations in caviomorph rodents (Rodentia: Caviomorpha). Journal of Zoology, London, 262, 145–159.Google Scholar
  28. Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.Google Scholar
  29. Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 188–198.Google Scholar
  30. Fleagle, J. G. (1985). Size and adaptation in primates. In W. L. Jungers (Ed.), Size and scaling in primate biology (pp. 1–19). Boston: Springer.Google Scholar
  31. Garamszegi, L. Z. (Ed.). (2014). Modern phylogenetic comparative methods and their application to evolutionary biology. Berlin: Springer.Google Scholar
  32. Gebo, D. L. (1988). Foot morphology and locomotor adaptation in Eocene primates. Folia Primatologica, 50, 3–41.Google Scholar
  33. Gebo, D. L., & Rose, K. D. (1993). Skeletal morphology and locomotor adaptation in Prolimnocyon atavus, an early Eocene hyaenodontid creodont. Journal of Vertebrate Paleontology, 13, 125–144.Google Scholar
  34. Gould, F. D. H. (2014). To 3D or not to 3D, that is the question: do 3D surface analyses improve the ecomorphological power of the distal femur in placental mammals? PLoS ONE, 9, e91719.Google Scholar
  35. Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny. Biological Reviews, 41, 587–638.Google Scholar
  36. Gregory, W. K. (1912). Notes on the principles of quadrupedal locomotion and on the mechanism of the limbs in hoofed animals. Annals of the New York Academy of Sciences, 22, 267–294.Google Scholar
  37. Gunz, P., Mitteroecker, P., & Bookstein, F. L. (2005). Semilandmarks in three dimensions. In D. E. Slice (Ed.), Modern morphometrics in physical anthropology (pp. 73–98). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  38. Hammer, Ø., & Harper, D. (2006). Paleontological data analysis. Malden: Blackwell Publishing.Google Scholar
  39. Hammer, Ø., Harper, D., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4.1.4A, 1–9.Google Scholar
  40. Hammond, A. S., Plavcan, J. M., & Ward, C. V. (2016). A validated method for modeling anthropoid hip abduction in silico. American Journal of Physical Anthropology, 160, 529–548.Google Scholar
  41. Hamrick, M. W. (1996). Articular size and curvature as determinants of carpal joint mobility and stability in strepsirrhine primates. Journal of Morphology, 230, 113–127.Google Scholar
  42. Heinrich, R. E., & Rose, K. D. (1997). Postcranial morphology and locomotor behaviour of two early Eocene miacoid carnivorans, Vulpavus and Didymictis. Palaeontology, 40, 279–305.Google Scholar
  43. Hildebrand, M. (1985). Walking and running. In M. Hildebrand, D. M. Bramble, K. F. Liem & D. B. Wake (Eds.), Functional vertebrate morphology (pp. 38–57). Cambridge: Belknap Press.Google Scholar
  44. Hildebrand, M. (1988). Form and function in vertebrate feeding and locomotion. American Zoologist, 28, 727–738.Google Scholar
  45. Hildebrand, M., & Goslow, G. (1998). Analysis of vertebrate structure (5th ed.). New York: Wiley.Google Scholar
  46. Hildebrand, M., Bramble, D. M., Liem, K. F., & Wake, D. B. (Eds.). (1985). Functional vertebrate morphology. Cambridge: Belknap Press.Google Scholar
  47. Hills, M. (1978). On ratios—a response to Atchley, Gaskins, and Anderson. Systematic Zoology, 27, 61–62.Google Scholar
  48. Hogg, R. (2018). Permanent record: the use of dental and bone microstructure to assess life history evolution and ecology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 75–98). Cham: Springer.Google Scholar
  49. Hopkins, S. S. B. (2018). Estimation of body size in fossil mammals. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 7–22). Cham: Springer.Google Scholar
  50. Huynh Nguyen, N., Pahr, D. H., Gross, T., Skinner, M. T., & Kivell, T. L. (2014). Micro-finite element (μFE) modeling of the siamang (Symphalangus syndactylus) third proximal phalanx: the functional role of curvature and the flexor sheath ridge. Journal of Human Evolution, 67, 60–75.Google Scholar
  51. Jacobs, R. L., Boyer, D. M., & Patel, B. A. (2009). Comparative functional morphology of the primate peroneal process. Journal of Human Evolution, 57, 721–731.Google Scholar
  52. Jungers, W. L., Falsetti, A. B., & Wall, C. E. (1995). Shape, relative size, and size-adjustments in morphometrics. American Journal of Physical Anthropology, 38, 137–161.Google Scholar
  53. Kappelman, J. (1988). Morphology and locomotor adaptations of the bovid femur in relation to habitat. Journal of Morphology, 198, 119–130.Google Scholar
  54. Kappelman, J., Plummer, T. W., Bishop, L. C., Duncan, A., & Appleton, S. (1997). Bovids as indicators of Plio-Pleistocene paleoenvironments in east Africa. Journal of Human Evolution, 32, 229–256.Google Scholar
  55. Kivell, T. L. (2016). A review of trabecular bone functional adaptation: what have we learned from trabecular analyses in extant hominoids and what can we apply to fossils? Journal of Anatomy, 228, 569–594.Google Scholar
  56. Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11, 353–357.Google Scholar
  57. Koehl, M. A. R. (1996). When does morphology matter? Annual Review of Ecology and Systematics, 27, 501–542.Google Scholar
  58. Koehl, P., & Hass, J. (2015). Landmark-free geometric methods in biological shape analysis. Journal of the Royal Society Interface, 12, 20150795.Google Scholar
  59. Larson, S. G. (1993). Functional morphology of the shoulder in primates. In D. L. Gebo (Ed.), Postcranial adaptation in nonhuman primates (pp. 45–69). De Kalb: Northern Illinois University Press.Google Scholar
  60. Lieberman, D. E. (1997). Making behavioral and phylogenetic inferences from hominid fossils: considering the developmental influence of mechanical forces. Annual Review of Anthropology, 26, 185–210.Google Scholar
  61. Lieberman, D. E., Devlin, M. J., & Pearson, O. M. (2001). Articular area responses to mechanical loading: effects of exercise, age, and skeletal location. American Journal of Physical Anthropology, 116, 266–277.Google Scholar
  62. Lieberman, D. E., Polk, J. D., & Demes, B. (2004). Predicting long bone loading from cross-sectional geometry. American Journal of Physical Anthropology, 123, 156–171.Google Scholar
  63. Losos, J. B. (1999). Uncertainty in the reconstruction of ancestral character states and limitations on the use of phylogenetic comparative methods. Animal Behavior, 58, 1319–1324.Google Scholar
  64. MacLatchy, L., & Müller, R. (2002). A comparison of the femoral head and neck trabecular architecture of Galago and Perodicticus using micro-computed tomography (μCT). Journal of Human Evolution, 43, 89–105.Google Scholar
  65. MacLeod, N., & Rose, K. D. (1993). Inferring locomotor behavior in Paleogene mammals via eigenshape analysis. American Journal of Science, 293, 300–355.Google Scholar
  66. Marelli, C. A., & Simons, E. L. R. (2014). Microstructure and cross-sectional shape of limb bones in great horned owls and red-tailed hawks: how do these features relate to differences in flight and hunting behavior? PLoS ONE, 9, e106094.Google Scholar
  67. Marzke, M. W., Tocheri, M. W., Steinberg, B., Femiani, J. D., Reece, S. P., Lincheid, R. L., et al. (2010). Comparative 3D quantitative analyses of trapeziometacarpal joint surface curvatures among living catarrhines and fossil hominins. American Journal of Physical Anthropology, 141, 38–51.Google Scholar
  68. Moyà-Solà, S., Köhler, M., Alba, D. M., & Roig, I. (2012). Calcaneal proportions in primates and locomotor inferences in Anchomomys and other Palaeogene euprimates. Swiss Journal of Palaeontology, 131, 147–159.Google Scholar
  69. Nunn, C. L. (2011). The comparative approach in evolutionary anthropology and biology. Chicago: The University of Chicago Press.Google Scholar
  70. Pohlert, T. (2014). The pairwise multiple comparison of mean ranks package (PMCMR). R package.
  71. R Core Team. (2015). R: A language and environment for statistical computing. GNU General Public License.Google Scholar
  72. Rose, K. D. (1990). Postcranial skeletal remains and adaptations in early Eocene mammals from the Willwood Formation, Bighorn Basin, Wyoming. Geological Society of America Special Paper, 243, 107–133.Google Scholar
  73. Ruff, C. B. (1989). New approaches to structural evolution of limb bones in primates. Folia Primatologica, 53, 142–159.Google Scholar
  74. Ruff, C. B. (2003a). Long bone articular and diaphyseal structure in Old World monkeys and apes. II: estimation of body mass. American Journal of Physical Anthropology, 120, 16–37.Google Scholar
  75. Ruff, C. B. (2003b). Ontogenetic adaptation to bipedalism: age changes in femoral to humeral length and strength proportions in humans, with a comparison to baboons. Journal of Human Evolution, 45, 317–349.Google Scholar
  76. Ruff, C. B. (2009). Relative limb strength and locomotion in Homo habilis. American Journal of Physical Anthropology, 138, 90–100.Google Scholar
  77. Ruff, C. B., & Runestad, J. A. (1992). Primate limb bone structural adaptations. Annual Review of Anthropology, 21, 407–433.Google Scholar
  78. Ruff, C. B., Walker, A., & Trinkaus, E. (1994). Postcranial robusticity in Homo. III: ontogeny. American Journal of Physical Anthropology, 93, 35–54.Google Scholar
  79. Ruff, C. B., Holt, B., & Trinkaus, E. (2006). Who’s afraid of the big bad Wolff?: ‘Wolff’s law’ and bone functional adaptation. American Journal of Physical Anthropology, 129, 484–498.Google Scholar
  80. Runestad, J. A. (1997). Postcranial adaptations for climbing in Loridae (Primates). Journal of Zoology, London, 242, 261–290.Google Scholar
  81. Ryan, T. M., & Ketcham, R. A. (2002a). The three-dimensional structure of trabecular bone in the femoral head of strepsirrhine primates. Journal of Human Evolution, 43, 1–26.Google Scholar
  82. Ryan, T. M., & Ketcham, R. A. (2002b). Femoral head trabecular bone structure in two omomyid primates. Journal of Human Evolution, 43, 241–263.Google Scholar
  83. Ryan, T. M., & Walker, A. (2010). Trabecular bone structure in the humeral and femoral heads of anthropoid primates. Anatomical Record, 293, 719–729.Google Scholar
  84. Schaeffer, B. (1947). Notes on the origin and function of the artiodactyl tarsus. American Museum Novitates, 1356, 1–24.Google Scholar
  85. Scherf, H. (2008). Locomotion-related femoral trabecular architectures in primates—high resolution computed tomographies and their implications for estimations of locomotor preferences of fossil primates. In H. Endo & R. Frey (Eds.), Anatomical imaging (pp. 39–59). Tokyo: Springer Japan.Google Scholar
  86. Schmitt, D. (1996). Humeral head shape as an indicator of locomotor behavior in extant strepsirrhines and Eocene adapids. Folia Primatologica, 67, 137–151.Google Scholar
  87. Shaw, C. N., & Ryan, T. M. (2011). Does skeletal anatomy reflect adaptation to locomotor patterns? Cortical and trabecular architecture in human and nonhuman anthropoids. American Journal of Physical Anthropology, 147, 187–200.Google Scholar
  88. Shockey, B. J., Croft, D. A., & Anaya, F. (2007). Analysis of function in the absence of extant functional homologues: a case study using mesotheriid notoungulates (Mammalia). Paleobiology, 33, 227–247.Google Scholar
  89. Smith, J. M., & Savage, R. J. G. (1956). Some locomotory adaptations in mammals. Journal of Zoology, London, 42, 603–622.Google Scholar
  90. Smith, R. J. (1980). Rethinking allometry. Journal of Theoretical Biology, 87, 97–111.Google Scholar
  91. Smith, R. J. (2005). Relative size versus controlling for size. Current Anthropology, 46, 249–273.Google Scholar
  92. Sockol, M. D., Raichlen, D. A., & Pontzer, H. (2007). Chimpanzee locomotor energetics and the origin of human bipedalism. Proceedings of the National Academy of Sciences, USA, 104, 12265–12269.Google Scholar
  93. Sokal, R. R., & Rohlf, F. J. (1995). Biometry (3rd ed.). New York: W. H. Freeman & Co.Google Scholar
  94. Swartz, S., & Ward, C. V. (2014). Variation of proximal femoral angular orientation in human and non-human primates. American Journal of Physical Anthropology, 153, 250.Google Scholar
  95. Swartz, S. M. (1993). Biomechanics of primate limbs. In D. L. Gebo (Ed.), Postcranial adaptation in nonhuman primates (pp. 5–42). De Kalb: Northern Illinois University Press.Google Scholar
  96. Tocheri, M. W. (2009). Laser scanning: 3D analysis of biological surfaces. In C. W. Sensen & B. Hallgrímson (Eds.), Advanced imaging in biology and medicine (pp. 85–101). Berlin: Springer-Verlag.Google Scholar
  97. Tocheri, M. W., Razdan, A., Williams, R. C., & Marzke, M. W. (2005). A 3D quantitative comparison of trapezium and trapezoid relative articular and nonarticular surface areas in modern humans and great apes. Journal of Human Evolution, 49, 570–586.Google Scholar
  98. Tocheri, M. W., Solhan, C. R., Orr, C. M., Femiani, J., Frohlich, B., Groves, C. P., et al. (2011). Ecological divergence and medial cuneiform morphology in gorillas. Journal of Human Evolution, 60, 171–184.Google Scholar
  99. Tsubamoto, T. (2014). Estimating body mass from the astragalus in mammals. Acta Palaeontologica Polonica, 59, 259–265.Google Scholar
  100. Van Valkenburgh, B. (1994). Ecomorphological analysis of fossil vertebrates and their paleocommunities. In P. C. Wainwright & S. M. Reilly (Eds.), Ecological morphology (pp. 140–166). Chicago: The University of Chicago Press.Google Scholar
  101. Walker, A. (1974). Locomotor adaptations in past and present prosimian primates. In F. A. Jenkins Jr. (Ed.), Primate locomotion (pp. 349–381). New York: Academic Press.Google Scholar
  102. Warrener, A. G., Lewton, K. L., Pontzer, H., & Lieberman, D. E. (2015). A wider pelvis does not increase locomotor cost in humans, with implications for the evolution of childbirth. PLoS ONE, 10, e0118903.Google Scholar
  103. Yalden, D. W. (1970). The functional morphology of the carpal bones in carnivores. Acta Anatomica, 77, 481–500.Google Scholar
  104. Yalden, D. W. (1971). The functional morphology of the carpus in ungulate mammals. Acta Anatomica, 78, 461–487.Google Scholar
  105. Yalden, D. W. (1972). The form and function of the carpal bones in some arboreally adapted mammals. Acta Anatomica, 82, 383–406.Google Scholar
  106. Yapuncich, G. S., & Boyer, D. M. (2014). Talar articular surface curvature decreases allometrically among primates. American Journal of Physical Anthropology, 153, 278–279.Google Scholar
  107. Yapuncich, G. S., Gladman, J. T., & Boyer, D. M. (2015). Predicting euarchontan body mass: a comparison of tarsal and dental variables. American Journal of Physical Anthropology, 157, 472–506.Google Scholar
  108. Zelditch, M. L., Swiderski, D. L., & Sheets, H. D. (2012). Geometric morphometrics for biologists (2nd ed.). Amsterdam: Academic Press.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of AnatomyDes Moines UniversityDes MoinesUSA

Personalised recommendations