Advertisement

Making Sense of the Evidence: Synthesizing Paleoecological Data

  • Denise F. SuEmail author
  • Darin A. Croft
Chapter
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Abstract

Paleontologists are increasingly concerned with understanding the biology of extinct species and their environments. This has resulted in a proliferation of new techniques and methodologies that provide a wealth of new data for understanding the paleobiology of extinct species and paleoecological relationships between them and their environment. However, combining such analyses to reconstruct an ancient terrestrial ecosystem can present many challenges, particularly when different lines of evidence appear to provide contradictory information. Here, we discuss some of the ways that taphonomy can bias primary data and how awareness of such issues can increase the accuracy of paleoecological studies. We discuss two geographically and temporally disparate fossil sites as examples of paleoecological reconstruction (the Pliocene of East Africa and the early Oligocene of central Chile) and possible ways of reconciling apparently contradictory data and analyses. We conclude that reconstructing ancient ecosystems requires: (1) accurate data and knowledge of potential biases; (2) a thorough understanding of the analytical techniques being applied and their a priori assumptions; and (3) a willingness to recognize non-analog species, habitats, and communities when necessary.

Keywords

Taphonomy Non-analog Scale Paleoecological reconstruction 

Notes

Acknowledgements

We thank many colleagues for all the discussions over the years that have informed many of the ideas in this paper, particularly: P. Andrews, J. Flynn, T. Harrison, R. Kay, K. Kovarovic, R. Madden, K. Reed, H. Semken, B. Townsend, S. Vizcaíno, A. Wyss. We are grateful to all the contributors to this edited volume and the workshop on which this volume is based as well as our home institutions, the Cleveland Museum of Natural History and Case Western Reserve University. We thank K. Kovarovic and S. Simpson for commenting on earlier versions of the paper. The authors also gratefully acknowledge financial support from the National Science Foundation (DFS: BCS 0216683, BCS 1035897, BCS 1227964; DAC: DEB 0317014, EAR 0819817, EAR 0958733, EAR 1423058).

References

  1. Andrews, P. (2006). Taphonomic effects of faunal impoverishment and faunal mixing. Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 572–589.CrossRefGoogle Scholar
  2. Bamford, M. K. (2011a). Fossil leaves, fruits and seeds. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 235–252). Dordrecht: Springer.Google Scholar
  3. Bamford, M. K. (2011b). Fossil woods. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 217–233). Dordrecht: Springer.Google Scholar
  4. Barr, W. A. (2018). Ecomorphology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 337–347). Cham: Springer.Google Scholar
  5. Behrensmeyer, A. K. (1975). The taphonomy and paleoecology of Plio-Pleistocene vertebrate assemblages east of Lake Rudolf, Kenya. Bulletin of the Museum of Comparative Zoology, 146, 473–578.Google Scholar
  6. Behrensmeyer, A. K., & Hill, A. P. (1980). Fossils in the making. Chicago: University of Chicago Press.Google Scholar
  7. Bellosi, E. S., Laza, J. H., Victoria Sánchez, M., & Genise, J. F. (2010). Ichnofacies analysis of the Sarmiento Formation (middle Eocene – early Miocene) at Gran Barranca, central Patagonia. In R. H. Madden, A. A. Carlini, M. G. Vucetich & R. F. Kay (Eds.), The paleontology of Gran Barranca. Evolution and environmental change through the middle Cenozoic of Patagonia (pp. 306–316). Cambridge: Cambridge University Press.Google Scholar
  8. Berke, M. A. (2018). Reconstructing terrestrial paleoenvironments using sedimentary organic biomarkers. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 121–149). Cham: Springer.Google Scholar
  9. Beverly, J. E., Lukens, W. E., & Stinchcomb, G. E. (2018). Paleopedology as a tool for reconstructing paleoenvironments and paleoecology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 151–182). Cham: Springer.Google Scholar
  10. Biasatti, D., Wang, Y., Gao, F., Xu, Y., & Flynn, L. (2012). Paleoecologies and paleoclimates of late cenozoic mammals from Southwest China: evidence from stable carbon and oxygen isotopes. Journal of Asian Earth Sciences, 44, 48–61.CrossRefGoogle Scholar
  11. Bishop, L. C., Plummer, T. W., Hertel, F., & Kovarovic, K. (2011). Paleoenvironments of Laetoli, Tanzania as determined by antelope habitat preferences. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 327–337). Dordrecht: Springer.Google Scholar
  12. Blumenschine, R. J. (1988). An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. Journal of Archaeological Science, 15, 483–502.CrossRefGoogle Scholar
  13. Bonnefille, R., & Riollet, G. (1987). Palynological spectra from the Upper Laetoli Beds. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 52–61). Oxford: Oxford University Press.Google Scholar
  14. Brain, C. K. (1980). Some criteria for the recognition of bone-collecting agencies in African caves. In A. K. Behrensmeyer & A. P. Hill (Eds.), Fossils in the making (pp. 107–130). Chicago: University of Chicago Press.Google Scholar
  15. Campisano, C., & Feibel, G. S. (2007). Connecting local environmental sequences to global climate patterns: evidence from the hominin-bearing Hadar Formation, Ethiopia. Journal of Human Evolution, 53, 515–527.CrossRefGoogle Scholar
  16. Charrier, R., Wyss, A. R., Flynn, J. J., Swisher, C. C., Norell, M. A., Zapatta, F., et al. (1996). New evidence for late Mesozoic–early Cenozoic evolution of the Chilean Andes in the upper Tinguiririca Valley (35°S), central Chile. Journal of South American Earth Sciences, 9, 393–422.CrossRefGoogle Scholar
  17. Cione, A. L., Azpelicueta, M. M., Bond, M., Carlini, A. A., Casciotta, J. R., Cozzuol, M. A., et al. (2000). Miocene vertebrates from Entre Ríos Province, eastern Argentina. El Neógeno de Argentina, INSUGEO, Serie Correlación Geológica, 14, 191–237.Google Scholar
  18. Cladera, G., Ruigómez, E., Ortiz-Jaureguizar, E., Bond, M., & López, G. (2004). Tafonomía de la Gran Hondonada (Formación Sarmiento, Edad-mamífero Mustersense, Eoceno Medio) Chubut, Argentina. Ameghiniana, 41, 315–330.Google Scholar
  19. Croft, D. A. (2001). Cenozoic environmental change in South America as indicated by mammalian body size distributions (cenograms). Diversity and Distributions, 7, 271–287.CrossRefGoogle Scholar
  20. Croft, D. A. (2013). What constitutes a fossil mammal community in the early Miocene Santa Cruz Formation? Journal of Vertebrate Paleontology, 33, 401–409.CrossRefGoogle Scholar
  21. Croft, D. A. (2016). Horned armadillos and rafting monkeys: The fascinating fossil mammals of South America. Bloomington, Indiana: Indiana University Press.Google Scholar
  22. Croft, D. A., Flynn, J. J., & Wyss, A. R. (2008). The Tinguiririca Fauna of Chile and the early stages of “modernization” of South American mammal faunas. Arquivos do Museu Nacional, Rio de Janeiro, 66, 191–211.Google Scholar
  23. Curran, S. C. (2018). Three-dimensional geometric morphometrics in paleoecology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 317–335). Cham: Springer.Google Scholar
  24. Damuth, J. (1982). Analysis of the preservation of community structure in assemblages of fossil mammals. Paleobiology, 8, 434–446.CrossRefGoogle Scholar
  25. Darlington, J. P. (2011). Trace fossils interpreted in relation to the extant termite fauna at Laetoli, Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 555–565). Dordrecht: Springer.CrossRefGoogle Scholar
  26. DeMiguel, D., Azanza, B., & Morales, J. (2010). Trophic flexibility within the oldest Cervidae lineage to persist through the Miocene Climatic Optimum. Palaeogeography, Palaeoclimatology, Palaeoecology, 289, 81–92.CrossRefGoogle Scholar
  27. Ditchfield, P., & Harrison, T. (2011). Sedimentology, lithostratigraphy and depositional history of the Laetoli area. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 47–76). Dordrecht: Springer.Google Scholar
  28. Dreyer, S. (1984). The Theory and Use of Methods for the Study of Mammalian Paleoecology. Ph.D. Dissertation, University of London.Google Scholar
  29. Dunn, R. E., Strömberg, C. A. E., Madden, R. H., Kohn, M. J., & Carlini, A. A. (2015). Linked canopy, climate, and faunal change in the Cenozoic of Patagonia. Science, 347, 258–261.CrossRefGoogle Scholar
  30. Dunn, R. H. (2018). Functional morphology of the postcranial skeleton. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 23–36). Cham: Springer.Google Scholar
  31. Efremov, J. E. (1940). Taphonomy: a new branch of paleontology. American Geologist, 74, 81–93.Google Scholar
  32. Eiler, J. M., Berquist, B., Bourg, I., Cartigny, P., Farquhar, J., Gagnon, A., et al. (2014). Frontiers of stable isotope geoscience. Chemical Geology, 372, 119–143.CrossRefGoogle Scholar
  33. Evans, A. R., & Pineda-Munoz, S. (2018). Inferring mammal dietary ecology from dental morphology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 37–51). Cham: Springer.Google Scholar
  34. Fernández-Jalvo, Y., & Andrews, P. (2016). Atlas of taphonomic identifications. Dordrecht: Springer.CrossRefGoogle Scholar
  35. Flynn, J. J., Wyss, A. R., Croft, D. A., & Charrier, R. (2003). The Tinguiririca Fauna, Chile: biochronology, paleoecology, biogeography, and a new earliest Oligocene South American Land Mammal “Age”. Palaeogeography, Palaeoclimatology, Palaeoecology, 195, 229–259.CrossRefGoogle Scholar
  36. Foote, M. (1992). Rarefaction analysis of morphological and taxonomic diversity. Paleobiology, 18, 1–16.CrossRefGoogle Scholar
  37. Green, J. L., & Croft, D. A. (2018). Using dental mesowear and microwear for dietary inference: a review of current techniques and applications. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 53–73). Cham: Springer.Google Scholar
  38. Goillot, C., Blondel, C., & Peigné, S. (2009). Relationships between dental microwear and diet in Carnivora (Mammalia)—Implications for the reconstruction of the diet of extinct taxa. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 13–23.CrossRefGoogle Scholar
  39. Harrison, T. (Ed). (2011a). Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment. Dordrecht: Springer.Google Scholar
  40. Harrison, T. (Ed). (2011b). Paleontology and geology of Laetoli: Human evolution in context. Volume 2: Fossil hominins and the associated fauna. Dordrecht: Springer.Google Scholar
  41. Harrison, T. (2011c). Hominins from the Upper Laetoli and Upper Ndolanya Beds, Laetoli. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 2: Fossil hominins and the associated fauna (pp. 141–188). Dordrecht: Springer.CrossRefGoogle Scholar
  42. Harrison, T. (2011d). Cercopithecids (Cercopithecidae, Primates). In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 2: Fossil hominins and the associated fauna (pp. 83–139). Dordrecht: Springer.Google Scholar
  43. Harrison, T., & Kweka, A. (2011). Paleontological localities on the Eyasi Plateau, including Laetoli. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 17–45). Dordrecht: Springer.Google Scholar
  44. Harrison, T., Kwekason, A., & Su, D. F. (in review). Paleoecology of the Upper Laetoli Beds, Laetoli, Tanzania. In S. Reynolds & R. Bobe (Eds.), African paleoecology and human evolution. Cambridge: Cambridge University Press.Google Scholar
  45. Hay, R. L. (1987). Geology of the Laetoli area. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 23–47). Oxford: Oxford University Press.Google Scholar
  46. Hembree, D. (2018). The role of continental trace fossils in Cenozoic paleoenvironmental and paleoecological reconstructions. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 183–212). Cham: Springer.Google Scholar
  47. Higgins, P. (2018). Isotope ecology from biominerals. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 99–120). Cham: Springer.Google Scholar
  48. Hogg, R. (2018). Permanent record: the use of dental and bone microstructure to assess life history evolution and ecology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 75–98). Cham: Springer.Google Scholar
  49. Hopkins, S. S. B. (2018). Estimation of body size in fossil mammals. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 7–22). Cham: Springer.Google Scholar
  50. Hopley, P. J., Marshall, J. D., Weedon, G. P., Latham, A. G., Herries, A. I., & Kuykendall, K. L. (2007). Orbital forcing and the spread of C4 grasses in the late Neogene: stable isotope evidence from South African speleothems. Journal of Human Evolution, 53, 620–663.CrossRefGoogle Scholar
  51. Kaiser, T. M. (2011). Feeding ecology and niche partitioning of the Laetoli ungulate faunas. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 321–354). Dordrecht: Springer.Google Scholar
  52. Kay, R. F., & Madden, R. H. (1997). Mammals and rainfall: paleoecology of the middle Miocene at La Venta (Colombia, South America). Journal of Human Evolution, 32, 161–199.CrossRefGoogle Scholar
  53. Kay, R. F., Vizcaíno, S. F., & Bargo, M. S. (2012). A review of the paleoenvironment and paleoecology of the Miocene Santa Cruz Formation. In S. F. Vizcaíno, R. F. Kay & M. S. Bargo (Eds.), Early Miocene paleobiology in Patagonia: High-latitude paleocommunities of the Santa Cruz Formation (pp. 331–365). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  54. Kingston, J. D. (2011). Stable isotopic analyses of Laetoli fossil herbivores. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 293–328). Dordrecht: Springer.Google Scholar
  55. Kingston, J. D., & Harrison, T. (2007). Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: implications for early hominin paleoecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 243, 272–306.CrossRefGoogle Scholar
  56. Kohn, M. J., Strömberg, C. A. E., Madden, R. H., Dunn, R. E., Evans, S., Palacios, A., et al. (2015). Quasi-static Eocene-Oligocene climate in Patagonia promotes slow faunal evolution and mid-Cenozoic global cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 435, 24–37.CrossRefGoogle Scholar
  57. Kovarovic, K., & Andrews, P. (2007). Bovid postcranial ecomorphological survey of the Laetoli paleoenvironment. Journal of Human Evolution, 52, 663–680.CrossRefGoogle Scholar
  58. Kovarovic, K., & Andrews, P. (2011). Environmental change within the Laetoli fossiliferous sequence: vegetation catenas and bovid ecomorphology. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 355–366). Dordrecht: Springer.Google Scholar
  59. Kovarovic, K., Su, D. F., & Lintulaakso, K. (2018). Mammal community structure analysis. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 349–370). Cham: Springer.Google Scholar
  60. Leakey, M. D. (1987). Animal prints and trails. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 451–489). Oxford: University of Oxford Press.Google Scholar
  61. Leakey, M. D., & Harris, J. (Eds.). (1987). Laetoli: A Pliocene site in northern Tanzania. Oxford: University of Oxford Press.Google Scholar
  62. Levin, N. E., Brown, F. H., Behrensmeyer, A. K., Bobe, R., & Cerling, T. E. (2011). Paleosol carbonates from the Omo Group: isotopic records of local and regional environmental change in East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 307, 75–89.CrossRefGoogle Scholar
  63. Louys, J., Travouillon, K. J., Bassarova, M., & Tong, H. (2009). The use of protected natural areas in palaeoecological analyses: assumptions, limitations and application. Journal of Archaeological Science, 36, 2274–2288.CrossRefGoogle Scholar
  64. Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  65. Mander, L., & Punyasena, S. W. (2018). Fossil pollen and spores in paleoecology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 213–232). Cham: Springer.Google Scholar
  66. Mares, M. A., & Willig, M. R. (1994). Inferring biome associations of Recent mammals from samples of temperate and tropical faunas: paleoecological considerations. Historical Biology, 8, 31–48.CrossRefGoogle Scholar
  67. Merceron, G., Costeur, L., Maridet, O., Ramdarshan, A., & Göhlich, U. B. (2012). Multi-proxy approach detects heterogeneous habitats for primates during the Miocene climatic optimum in Central Europe. Journal of Human Evolution, 63, 150–161.CrossRefGoogle Scholar
  68. Palazzesi, L., & Barreda, V. (2012). Fossil pollen records reveal a late rise of open-habitat ecosystems in Patagonia. Nature Communications, 3, 1294.CrossRefGoogle Scholar
  69. Patterson, B., & Pascual, R. (1968). The fossil mammal fauna of South America. Quarterly Review of Biology, 43, 409–451.CrossRefGoogle Scholar
  70. Peppe, D. J., Baumgartner, A., Flynn, A., & Blonder, B. (2018). Reconstructing paleoclimate and paleoecology using fossil leaves. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 287–315). Cham: Springer.Google Scholar
  71. Reed, D., & Denys, C. (2011). The taphonomy and paleoenvironmental implications of the Laetoli micromammals. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 265–278). Dordrecht: Springer.Google Scholar
  72. Robb, C. (2002). Missing mammals: the effects of simulated fossil preservation biases on the paleoenvironmental reconstruction of hominid sites. American Journal of Physical Anthropology, 34, 132 suppl.Google Scholar
  73. Rossouw, L., & Scott, L. (2011). Phytoliths and pollen, the microscopic plant remains in Pliocene volcanic sediments around Laetoli, Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 201–215). Dordrecht: Springer.Google Scholar
  74. Sánchez, M. V., Laza, J. H., Bellosi, E. S., & Genise, J. F. (2010). Ichnostratigraphy of middle Cenozoic Coprinisphaera from central Patagonia: insights into the evolution of dung beetles, herbivores and grass-dominated habitats. Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 633–648.CrossRefGoogle Scholar
  75. Scott, W. B. (1937). A history of land mammals in the Western Hemisphere (2nd ed.). New York: MacMillan Co.Google Scholar
  76. Semken Jr. H. A., Graham, R. W., & Stafford Jr. T. W. (2010). AMS 14C analysis of Late Pleistocene non-analog faunal components from 21 cave deposits in southeastern North America. Quaternary International, 217, 240–255.CrossRefGoogle Scholar
  77. Soligo, C. (2001). Adaptations and ecology of the earliest primates. Ph.D. Dissertation, University of Zurich.Google Scholar
  78. Soligo, C., & Andrews, P. (2005). Taphonomic bias, taxonomic bias and historical non-equivalence of faunal structure in early hominin localities. Journal of Human Evolution, 49, 206–299.CrossRefGoogle Scholar
  79. Stebbins, G. L. (1981). Coevolution of grasses and herbivores. Annals of the Missouri Botanical Garden, 75–86.CrossRefGoogle Scholar
  80. Strömberg, C. A. E., Dunn, R. E., Madden, R. H., Kohn, M. J., & Carlini, A. A. (2013). Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nature Communications, 4, 1478.CrossRefGoogle Scholar
  81. Strömberg, C. A. E., Dunn, R. E., Crifò, C., & Harris, E. B. (2018). Phytoliths in paleoecology: Analytical considerations, current use, and future directions. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 233–285). Cham: Springer.Google Scholar
  82. Su, D. F. (2011). Large mammal evidence for the paleoenvironment of the Upper Laetoli and Upper Ndolanya Beds of Laetoli, Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 381–392). Dordrecht: Springer.Google Scholar
  83. Su, D. F., & Harrison, T. (2007). The paleoecology of the Upper Laetoli Beds at Laetoli: a reconsideration of the large mammal evidence. In R. Bobe, Z. Alemseged & A. K. Behrensmeyer (Eds.), Hominin environments in the East African Pliocene: An assessment of the faunal evidence (pp. 279–313). Dordrecht: Springer.CrossRefGoogle Scholar
  84. Su, D. F., & Harrison, T. (2008). Ecological implications of the relative rarity of fossil hominins at Laetoli. Journal of Human Evolution, 55, 672–681.CrossRefGoogle Scholar
  85. Su, D. F., & Harrison, T. (2015). The paleoecology of the Upper Laetoli Beds, Laetoli, Tanzania: a review and synthesis. Journal of African Earth Sciences, 101, 405–419.CrossRefGoogle Scholar
  86. Tattersfield, I. (2011). Gastropoda. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 2: Fossil hominins and the associated fauna (pp. 567–587). Dordrecht: Springer.CrossRefGoogle Scholar
  87. Tucker, S., Otto, R., Joeckel, R., & Voorhies, M. (2014). The geology and paleontology of Ashfall Fossil Beds, a late Miocene (Clarendonian) mass-death assemblage, Antelope County and adjacent Knox County, Nebraska, USA. In J. T. Korus (Ed.), Geologic field trips along the boundary between the Central Lowlands and Great Plains. GSA Field Guide 36 (pp. 1–22). Geological Society of America.Google Scholar
  88. Vermillion, W. A., Polly, P. D., Head, J. J., Eronen, J. T., & Lawing, A. M. (2018). Ecometrics: A trait-based approach to paleoclimate and paleoenvironmental reconstruction. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 371–392). Cham: Springer.Google Scholar
  89. Voorhies, M. R. (1969). Taphonomy and population dynamics of an early Pliocene vertebrate fauna, Knox County, Nebraska. Rocky Mountain Geology, 8, 1–69.Google Scholar
  90. Webb, S. D. (1978). A history of savanna vertebrates in the New World. Part II: South America and the Great Interchange. Annual Reviews of Ecology and Systematics, 9, 393–426.CrossRefGoogle Scholar
  91. Wyss, A. R., Flynn, J. J., Norell, M. A., Swisher III, C. C., Charrier, R., Novacek, M. J., et al. (1993). South America’s earliest rodent and recognition of a new interval of mammalian evolution. Nature, 365, 434–437.CrossRefGoogle Scholar
  92. Wyss, A. R., Flynn, J. J., Norell, M. A., Swisher III, C. C., Novacek, M. J., McKenna, M. C., et al. (1994). Paleogene mammals from the Andes of central Chile: a preliminary taxonomic, biostratigraphic, and geochronologic assessment. American Museum Novitates, 3098, 1–31.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Paleobotany and PaleoecologyCleveland Museum of Natural HistoryClevelandUSA
  2. 2.Department of AnatomyCase Western Reserve UniversityClevelandUSA

Personalised recommendations