Advertisement

Ecometrics: A Trait-Based Approach to Paleoclimate and Paleoenvironmental Reconstruction

  • Wesley A. Vermillion
  • P. David Polly
  • Jason J. Head
  • Jussi T. Eronen
  • A. Michelle Lawing
Chapter
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Abstract

Ecometrics is a trait-based approach to study ecosystem variability through time. An ecometric value is derived from describing the distribution of functional traits at the community level, which may arise by environmental filtering, extinction, or convergence. An ecometric relationship describes the correspondence between spatially explicit ecometric values and corresponding environmental variation. Transfer functions and maximum likelihood approaches have been developed with modern trait-environment relationships to reconstruct paleotemperature, paleoprecipitation, and paleovegetation cover given the distribution of functional traits within a community. Because the focus for this approach is on the traits and not on species, it is transferable through space and time and can be used to compare novel communities. In this paper we review the concepts and history of ecometric analysis and then describe practical methods for implementing an ecometric study.

Keywords

Functional morphology Paleoecology Maximum likelihood Geographic distribution Taxon-free 

Notes

Acknowledgements

This contribution is the result of collaborative work supported by the Integrative Climate Change Biology program (iCCB) of the International Union of Biological Sciences (IUBS). We thank Rachel Short, Darin Croft, and two anonymous reviewers for providing valuable feedback on the manuscript. PDP and JJH were supported by NSF grants EAR 1338298 and 1338028.

References

  1. Alexander, R. M. (1989). Optimization and gaits in the locomotion of vertebrates. Physiological Reviews, 69, 1199–1227.Google Scholar
  2. Allen, J. A. (1877). The influence of physical conditions in the genesis of species. Radical Review, 1, 108–140.Google Scholar
  3. Anderson, T. F., & Arthur, M. A. (1983). Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. In M. A. Arthur, T. F. Anderson, I. R. Kaplan, J. Veizer & L. S. Land (Eds.), Stable isotopes in sedimentary geology (pp. 1–151). Tulsa, OK: SEPM Short Course.Google Scholar
  4. Andrews, P., & Hixson, S. (2014). Taxon-free methods of palaeoecology. Annales Zoologici Fennici, 51, 269–284.Google Scholar
  5. Angielczyk, K. D., & Sheets, H. D. (2007). Investigation of simulated tectonic deformation in fossils using geometric morphometrics. Paleobiology, 33, 125–148.Google Scholar
  6. Arnold, S. J. (1983). Morphology, performance and fitness. American Zoologist, 23, 347–361.Google Scholar
  7. Ashton, K. G. (2002). Do amphibians follow Bergmann’s rule? Canadian Journal of Zoology, 80, 708–716.Google Scholar
  8. Bailey, I. W., & Sinnott, E. W. (1915). A botanical index of Cretaceous and Tertiary climates. Science, 41, 831–834.Google Scholar
  9. Barnosky, A. D., Hadly, E. A., Gonzalez, P., Head, J. J., Polly, P. D., Lawing, A. M., et al. (2017). Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science, 355, eaah4787.Google Scholar
  10. Baumiller, T. K., LaBarbera, M., & Woodley, J. D. (1991). Ecology and functional morphology of the isocrinid Cenocrinus asterius (Linnaeus) (Echinodermata: Crinoidea): in situ and laboratory experiments and observations. Bulletin of Marine Science, 48, 731–748.Google Scholar
  11. Beard, J. A., Ivany, L. C., & Runnegar, B. (2015). Gradients in seasonality and seawater oxygen isotopic composition along the early Permian Gondwanan coast, SE Australia. Earth and Planetary Science Letters, 425, 219–231.Google Scholar
  12. Beerling, D., Lomax, B., Royer, D., Upchurch, G., & Kump, L. (2002). An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils. Proceedings of the National Academy of Sciences, USA, 99, 7836–7840.Google Scholar
  13. Beerling, D. J., Fox, A., Stevenson, D. S., & Valdes, P. J. (2011). Enhanced chemistry-climate feedbacks in past greenhouse worlds. Proceedings of the National Academy of Sciences, USA, 108, 9770–9775.Google Scholar
  14. Belmaker, J., & Jetz, W. (2012). Regional pools and environmental controls of vertebrate assemblages. American Naturalist, 179, 512–523.Google Scholar
  15. Bergmann, C. (1847). Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Gottinger studien, 3, 595–708.Google Scholar
  16. Bivand, R. S., Pebesma, E., & Gomez-Rubio, V. (2013). Applied spatial data analysis with R (2nd ed.). New York, NY: Springer.Google Scholar
  17. Blackburn, T. M., Gaston, K. J., & Loder, N. (1999). Geographic gradients in body size: a clarification of Bergmann’s rule. Diversity and Distributions, 5, 165–174.Google Scholar
  18. Blackburn, T. M., & Hawkins, B. A. (2004). Bergmann’s rule and the mammal fauna of northern North America. Ecography, 27, 715–724.Google Scholar
  19. Bowen, R. (1964). Oxygen isotope paleotemperature measurements on Mesozoic Belemnoidea and their importance in paleoclimatic studies. In U. Colombo & G. D. Hobson (Eds.), Advances in organic geochemistry (pp. 271–283). New York, NY: Pergamon.Google Scholar
  20. Chapin III, F. S. (1993). Functional role of growth forms in ecosystem and global processes. In J. R. Ehleringer & C. B. Field (Eds.), Scaling physiological processes: Leaf to globe (pp. 287–312). San Diego, CA: Academic Press.Google Scholar
  21. Cornwell, W. K., & Ackerly, D. D. (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109–126.Google Scholar
  22. Crête, M., & Larivìere, S. (2003). Estimating the costs of locomotion in snow for coyotes. Canadian Journal of Zoology, 81, 1808–1814.Google Scholar
  23. Curran, S. C. (2018). Three-dimensional geometric morphometrics in paleoecology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 317–335). Cham: Springer.Google Scholar
  24. Damuth, J. D., Jablonski, D., Harris, R. M., Potts, R., Stucky, R. K., Sues, H. D. & Weishampel, D. B. (1992). Taxon-free characterization of animal communities. In A. K. Beherensmeyer, J. D. Damuth, W. A. diMichele, R. Potts, H. D. Sues & S. L. Wing (Eds.) Terrestrial ecosystems through time: Evolutionary paleoecology of terrestrial plants and animals (pp. 183–203). Chicago: University of Chicago Press.Google Scholar
  25. Damuth, J. D., & Janis, C. M. (2011). On the relationship between hypsodonty and feeding ecology in ungulate mammals and its utility in paleaeoecology. Biological Reviews, 86, 733–758.Google Scholar
  26. Darwin, C. R., & Wallace, A. R. (1858). On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. Journal of the Proceedings of the Linnean Society of London. Zoology, 3, 45–50.Google Scholar
  27. Díaz, S., & Cabido, M. (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16, 646–655.Google Scholar
  28. Diniz-Filho, J. A. F., Bini, L. M., Rodriguez, M. A., Rangel, T. F. L., & Hawkins, B. A. (2007). Seeing the forest for the trees: partitioning ecological and phylogenetic components of Bergmann’s rule in European Carnivora. Ecography, 30, 598–608.Google Scholar
  29. Eronen, J. T., Polly, P. D., Fred, M., Damuth, J., Frank, D. C., Mosbrugger, V., et al. (2010a). Ecometrics: the traits that bind the past and present together. Integrative Zoology, 5, 88–101.Google Scholar
  30. Eronen, J., Puolamaki, K., Liu, L., Lintulaakso, K., Damuth, J., Janis, C., et al. (2010b). Precipitation and large herbivorous mammals I: estimates from present-day communities. Evolutionary Ecology Research, 12, 217–233.Google Scholar
  31. Eronen, J. T., Fortelius, M., Micheels, A., Portmann, F. T., Puolamäki, K., & Janis, C. M. (2012). Neogene aridification of the Northern Hemisphere. Geology, 40, 823–826.Google Scholar
  32. Evans, A. R. (2013). Shape descriptors as ecometrics in dental ecology. Hystrix, the Italian Journal of Mammalogy, 24, 133–140.Google Scholar
  33. Evans, A. R., Wilson, G. P., Fortelius, M., & Jernvall, J. (2007). High-level similarity of dentitions in carnivorans and rodents. Nature, 445, 78–81.Google Scholar
  34. Fortelius, M., & Solounius, N. (2000). Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. American Museum Novitates, 3301, 1–36.Google Scholar
  35. Fortelius, M., Eronen, J. T., Jernvall, J., Liu, L. P., Pushkina, D., Rinne, J., et al. (2002). Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evolutionary Ecology Research, 4, 1005–1016.Google Scholar
  36. Fortelius, M., Eronen, J. T., Kaya, F., Tang, H., Raia, P., & Puolamäki, K. (2014). Evolution of Neogene mammals in Eurasia: environmental forcing and biotic interactions. Annual Review of Earth and Planetary Sciences, 42, 579–604.Google Scholar
  37. Fox, B. J. (1987). Species assembly and the evolution of community structure. Evolutionary Ecology, 1, 201–213.Google Scholar
  38. Freckleton, R. P., Harvey, P. H., & Pagel, M. (2003). Bergmann’s rule and body size in mammals. The American Naturalist, 161, 821–825.Google Scholar
  39. Gaston, K. J., Chown, S. L., & Evans, K. L. (2008). Ecogeographical rules: elements of a synthesis. Journal of Biogeography, 35, 483–500.Google Scholar
  40. Gloger, C. L. (1833). Das Abwandern der Vogel durch Einfluss des Klimas. Breslau, Prussia: A. Schulz.Google Scholar
  41. Greenwood, D. R., Wilf, P., Wing, S. L., & Christophel, D. C. (2004). Paleotemperature estimation using leaf-margin analysis: is Australia different? PALAIOS, 19, 129–142.Google Scholar
  42. Head, J. J., Bloch, J. I., Hastings, A. K., Bourque, J. R., Cadena, E. A., Herrera, F. A., et al. (2009). Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures. Nature, 457, 715–717.Google Scholar
  43. Head, J. J., Gunnell, G. F., Holroyd, P. A., Hutchison, J. H., & Ciochon, R. L. (2013). Giant lizards occupied herbivorous mammalian ecospace during the Paleogene greenhouse in Southeast Asia. Proceedings of the Royal Society of London, Series B, 280, 20130665.Google Scholar
  44. Hijmans, R. J. (2015). raster: Geographic data analysis and modeling. R package version 2.3-40.Google Scholar
  45. Hijmans, R. J., Cameron, J. L., Parra, P. G., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.Google Scholar
  46. Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposiums on Quantitative Biology, 22, 415–427.Google Scholar
  47. Huyghe, D., Lartaud, F., Emmanuel, L., Merle, D., & Renard, M. (2015). Palaeogene climate evolution in the Paris Basin from oxygen stable isotope (δ18O) compositions of marine molluscs. Journal of the Geological Society, 172, 576–587.Google Scholar
  48. Jackson, S. T., & Overpeck, J. T. (2000). Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology, 26, 194–220.Google Scholar
  49. Janis, C. M., & Fortelius, M. (1988). On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biological Reviews of the Cambridge Philosophical Society, 63, 197–230.Google Scholar
  50. Jones, H. G., & Vaughan, R. A. (2010). Remote sensing of vegetation: Principles, techniques, and applications. New York, NY: Oxford University Press.Google Scholar
  51. Jones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., O’Dell, J., Orme, C. D. L., et al. (2009). PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology, 90, 2648–2648.Google Scholar
  52. Klein, D. R., Meldgaard, M., & Fancy, S. G. (1987). Factors determining leg length in Rangifer tarandus. Journal of Mammalogy, 68, 642–655.Google Scholar
  53. Krantz, D. E., Williams, D. F., & Jones, D. S. (1987). Ecological and paleoenvironmental information using stable isotope profiles from living and fossil molluscs. Palaeogeography, Palaeoclimatology, Palaeoecology, 58, 249–266.Google Scholar
  54. Lawing, A. M., Eronen, J. T., Blois, J. L., Graham, C. H., & Polly, P. D. (2017). Community functional trait composition at the continental scale: the effects of non-ecological processes. Ecography, 40, 651–663.Google Scholar
  55. Lawing, A. M., Head, J. J., & Polly, P. D. (2012). The ecology of morphology: the ecometrics of locomotion and macroenvironment in North American snakes. In J. Louys (Ed.), Paleontology in ecology and conservation (pp. 117–146). Berlin: Springer, Berlin Heidelberg.Google Scholar
  56. Lincoln, R. J. B., & Clark, G. A. (1982). A dictionary of ecology, evolution and systematics. Cambridge, UK: Cambridge University Press.Google Scholar
  57. Little, S. A., Kembel, S. W., & Wilf, P. (2010). Paleotemperature proxies from leaf fossils reinterpreted in light of evolutionary history. PLoS ONE, 5, e15161.Google Scholar
  58. Liu, L., Puolamäki, K., Eronen, J. T., Ataabadi, M. M., Hernesniemi, E. & Fortelius, M. (2012). Dental functional traits of mammals resolve productivity in terrestrial ecosystems past and present. Proceedings of the Royal Society of London B: Biological Sciences, 20120211.Google Scholar
  59. Lynch-Stieglitz, J., Polissar, P. J., Jacobel, A. W., Hovan, S. A., Pockalny, R. A., Lyle, M., et al. (2015). Glacial-interglacial changes in central tropical Pacific surface seawater property gradients. Paleoceanography, 30, 423–438.Google Scholar
  60. MacFadden, B. J. (1990). Body size in mammalian paleobiology: Estimation and biological implications. Cambridge, UK: Cambridge University Press.Google Scholar
  61. Makarieva, A. M., Gorshkov, V. G., & Li, B. L. (2005). Temperature-associated upper limits to body size in terrestrial poikilotherms. Oikos, 111, 425–436.Google Scholar
  62. MacKenzie, K. M., Longmore, C., Preece, C., Lucas, C. H., & Trueman, C. N. (2014). Testing the long-term stability of marine isoscapes in shelf seas using jellyfish tissues. Biogeochemistry, 121, 441–454.Google Scholar
  63. Marchais, V., Schaal, G., Grall, J., Lorrain, A., Nerot, C., Richard, P., et al. (2013). Spatial variability of stable isotope ratios in oysters (Crassostrea gigas) and primary producers along an estuarine gradient (Bay of Brest, France). Estuaries and Coasts, 36, 808–819.Google Scholar
  64. Mayr, E. (1963). Animal species and evolution. Cambridge, Massachusetts: Belknap Press of Harvard University Press.Google Scholar
  65. Mendoza, M., Janis, C. M., & Palmqvist, P. (2005). Ecological patterns in the trophic-size structure of large mammal communities: a ‘taxon-free’ characterization. Evolutionary Ecology Research, 7, 505–530.Google Scholar
  66. Owen-Smith, R. N. (2002). Adaptive herbivore ecology: From resources to populations in variable environments. Cambridge University Press.Google Scholar
  67. Pebesma, E. J., & Bivand, R. S. (2005). Classes and methods for spatial data in R. R News, 5, 2.Google Scholar
  68. Peppe, D. J., Royer, D. L., Cariglino, B., Oliver, S. Y., Newman, S., et al. (2011). Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 190, 724–739.Google Scholar
  69. Poff, N. L. (1997). Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society, 16, 391–409.Google Scholar
  70. Polly, P. D. (2008). Adaptive zones and the pinniped ankle: a 3D quantitative analysis of carnivoran tarsal evolution. In E. Sargis & M. Dagosto (Eds.), Mammalian evolutionary morphology: A tribute to Frederick S. Szalay (pp. 165–194). Dordrecht: Springer.Google Scholar
  71. Polly, P. D. (2010). Tiptoeing through the trophics: geographic variation in carnivoran locomotor ecomorphology in relation to environment. In A. Goswami & A. Friscia (Eds.), Carnivoran evolution: New views on phylogeny, form, and function (pp. 347–410). Cambridge, UK: Cambridge University Press.Google Scholar
  72. Polly, P. D., Eronen, J. T., Fred, M., Dietl, G. P., Mosbrugger, V., Scheidegger, C., et al. (2011). History matters: ecometrics and integrative climate change biology. Proceedings of the Royal Society of London B: Biological Sciences, rspb20102233.Google Scholar
  73. Polly, P. D., & Head, J. J. (2015). Measuring Earth-life transitions: ecometric analysis of functional traits from late Cenozoic vertebrates. In P. D. Polly, J. J. Head & D. L. Fox (Eds.), Earth-life transitions: Paleobiology in the context of Earth system evolution (pp. 21–46). The Paleontological Society Papers 21. New Haven, CT: Yale Press.Google Scholar
  74. Polly, P. D., & Sarwar, S. (2014). Extinction, extirpation, and exotics: effects on the correlation between traits and environment at the continental level. Annales Zoologici Fennici, 51, 209–226.Google Scholar
  75. Polly, P. D., Lawing, A. M., Eronen, J. T., & Schnitzler, J. (2016a). Processes of ecometric patterning: modeling functional traits, environments, and clade dynamics in deep time. Biological Journal of the Linnaean Society, 118, 39–63.Google Scholar
  76. Polly, P. D., Stayton, C. T., Dumont, E. R., Pierce, S. E., Rayfield, E. J. & Angielczyk, K. (2016b). Combining geometric morphometrics and finite element analysis with evolutionary modeling: towards a synthesis. Journal of Vertebrate Paleontology, 36, e1111225.Google Scholar
  77. Polly, P. D., Fuentes-Gonzales, J., Lawing, A. M., Bormet, A. K., & Dundas, R. G. (2017). Clade sorting has a greater effect than local adaptation on ecometric patterns in Carnivora. Evolutionary Ecology Research, 18, 187–200.Google Scholar
  78. Rayfield, E. J. (2007). Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms. Annual Review of Earth and Planetary Sciences, 35, 541–576.Google Scholar
  79. Reich, P. B., Walters, M. B., & Ellsworth, D. S. (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences, USA, 94, 13730–13734.Google Scholar
  80. Reich, S., Warter, V., Wesselingh, F. P., Zwaan, J. C., Lourens, L., & Renema, W. (2015). Paleoecological significance of stable isotope ratios in Miocene tropical shallow marine habitats (Indonesia). PALAIOS, 30, 53–65.Google Scholar
  81. Ricklefs, R. E., & Travis, J. (1980). A morphological approach to the study of Avian community organization. The Auk, 97, 321–338.Google Scholar
  82. Rodrigues, G. B., Fauth, G., Santos, R. V., Koutsoukos, E. A. M., & Colin, J.-P. (2014). Tracking paleoecological and isotopic changes through the K-Pg boundary from marine ostracodes: the Poty quarry section, northeastern Brazil. Cretaceous Research, 47, 105–116.Google Scholar
  83. Rodríguez, M. Á., Olalla-Tárraga, M. Á., & Hawkins, B. A. (2008). Bergmann’s rule and the geography of mammal body size in the Western Hemisphere. Global Ecology and Biogeography, 17, 274–283.Google Scholar
  84. Royer, D. L., & Wilf, P. (2006). Why do toothed leaves correlate with cold climates? Gas exchange at leaf margins provides new insights into a classic paleotemperature proxy. International Journal of Plant Science, 167, 11–18.Google Scholar
  85. Royer, D. L., Wilf, P., Janesko, D. A., Kowalski, E. A., & Dilcher, D. L. (2005). Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. American Journal of Botany, 92, 1141–1151.Google Scholar
  86. Saarinen, J. (2014). Ecometrics of large herbivorous land mammals in relation to climatic and environmental changes during the Pleistocene. Ph.D. Dissertation, Uppsala University.Google Scholar
  87. Saarinen, J., & Karme, A. (2017). Tooth wear and diets of extant and fossil xenarthrans (Mammalia, Xenarthra)–Applying a new mesowear approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 476, 42–54.Google Scholar
  88. Scholander, P. F. (1955). Evolution of climatic adaptation in homeotherms. Evolution, 9, 15–26.Google Scholar
  89. Sepkoski, J. J. (1978). A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology, 4, 223–251.Google Scholar
  90. Shino, Y., & Suzuki, Y. (2011). The ideal hydrodynamic form of the concavo-convex productide brachiopod shell. Lethaia, 44, 329–343.Google Scholar
  91. Smith, F. A., Lyons, S. K., Ernest, S. K. M., Jones, K. E., Kauffman, D. M., Dayan, T., et al. (2003). Body mass of late Quaternary mammals. Ecology, 84, 3403.Google Scholar
  92. Stayton, C. T. (2011). Biomechanics on the half shell: functional performance influences patterns of morphological variation in the emydid turtle carapace. Zoology, 114, 213–223.Google Scholar
  93. Strömberg, C. A. E., Dunn, R. E., Madden, R. H., Kohn, M. J., & Carlini, A. A. (2013). Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nature Communications, 4, 1478.Google Scholar
  94. Tapaltsyan, V., Eronen, J. T., Lawing, A. M., Sharir, A., Janis, C., Jernvall, J., et al. (2015). Continuously growing rodent molars result from a predictable quantitative evolutionary change over 50 million years. Cell Reports, 11, 673–680.Google Scholar
  95. Thompson, J. N., Reichman, O. J., Morin, P. J., Polis, G. A., Power, M. E., Sterner, R. W., Couch, C. A., Gough, L., Holt, R., Hooper, D. U., Keesing, F., Lovell, C. R., Milne, B. T., Molles, M. C., Roberts, D. W., & Strauss, S. Y. (2001). Frontiers of ecology: as ecological research enters a new era of collaboration, integration, and technological sophistication, four frontiers seem paramount for understanding how biological and physical processes interact over multiple spatial and temporal scales to shape the Earth’s biodiversity. BioScience, 51, 15–24.Google Scholar
  96. Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., et al. (2007). Let the concept of trait be functional! Oikos, 116, 882–892.Google Scholar
  97. Wallin, M. (1991). Ecometric analysis of factors regulating eutrophication effects in coastal waters: a case study of marine fish farms. Ph.D. Dissertation, Uppsala University.Google Scholar
  98. Webster, M., & Hughes, N. C. (1999). Compaction-related deformation in Cambrian olenelloid trilobites and its implications for fossil morphometry. Journal of Paleontology, 73, 355–371.Google Scholar
  99. Wefer, G., & Berger, W. H. (1991). Isotope paleontology: growth and composition of extant calcareous specie. Marine Geology, 100, 207–248.Google Scholar
  100. Weiher, E., Clarke, G. D. P., & Keddy, P. A. (1998). Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos, 81, 309–322.Google Scholar
  101. Wilf, P. (1997). When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology, 23, 373–390.Google Scholar
  102. Wilson, G. P., Evans, A. R., Corfe, I. J., Smits, P. D., Fortelius, M., & Jernvall, J. (2012). Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature, 483, 457–460.Google Scholar
  103. Wing, S. L., Harrington, G. L., Smith, F. A., Bloch, J. I., Boyer, D. M., & Freeman, K. H. (2005). Transient floral change and rapid global warming at the Paleoeocene-Eocene boundary. Science, 310, 993–996.Google Scholar
  104. Wolfe, J. A. (1979). Temperature parameters of humid to mesic forests of eastern Asia and relation to forests of other regions of the northern hemisphere and Australasia. Geological Survey Professional Paper, 1106.Google Scholar
  105. Wolfe, J. A. (1990). Palaeobotanical evidence for a marked temperature increase following the Cretaceous/Tertiary boundary. Nature, 343, 153–156.Google Scholar
  106. Wolfe, J. A. (1993). A method of obtaining climatic parameters from leaf assemblages. Bulletin of the US Geological Survey, 2040.Google Scholar
  107. Wolfe, J. A. (1994). Tertiary climatic changes at middle latitudes of western North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 108, 195–205.Google Scholar
  108. Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827.Google Scholar
  109. Wroe, S. (2008). Cranial mechanics compared in extinct marsupial and extant African lions using a finite-element approach. Journal of Zoology, 274, 332–339.Google Scholar
  110. Yang, J., Wang, Y. F., Spicer, R. A., Mosbrugger, V., Li, C. S., & Sun, Q. G. (2007). Climatic reconstruction at the Miocene Shanwang basin, China, using leaf margin analysis, CLAMP, coexistence approach, and overlapping distribution analysis. American Journal of Botany, 94, 599–608.Google Scholar
  111. Yasuhara, M., Tittensor, D. P., Hillebrand, H., & Worm, B. (2015). Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biological Reviews, 92, 195–215.Google Scholar
  112. Žliobaitė, I., Rinne, J., Tóth, A. B., Mechenich, M., Liu, L., Behrensmeyer, A. K., et al. (2016). Herbivore teeth predict climatic limits in Kenyan ecosystems. Proceedings of the National Academy of Sciences, USA, 113, 12751–12756.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Wesley A. Vermillion
    • 1
  • P. David Polly
    • 2
  • Jason J. Head
    • 3
  • Jussi T. Eronen
    • 4
  • A. Michelle Lawing
    • 1
  1. 1.Department of Ecosystem Science and ManagementTexas A&M UniversityCollege StationUSA
  2. 2.Departments of Earth & Atmospheric Sciences, Biology, and AnthropologyIndiana UniversityBloomingtonUSA
  3. 3.Department of Zoology and University Museum of ZoologyUniversity of CambridgeCambridgeUK
  4. 4.Ecosystems and Environment Research Programme and Helsinki Institute of Sustainability Science (HELSUS)University of HelsinkiHelsinkiFinland

Personalised recommendations