Advertisement

Mammal Community Structure Analysis

  • Kris Kovarovic
  • Denise F. Su
  • Kari Lintulaakso
Chapter
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Abstract

Fundamentally rooted in Odum’s niche concept, mammal community studies are based on the understanding that each resident species reveals information about its environment through its adaptations to specific resources and landscape features. Ecologists view the community’s profile of strategies for exploiting particular spatial and dietary niches; a quantitative summary of these strategies when compared across locales from a variety of habitat types demonstrates striking similarities in the communities that live in similar habitats regardless of their location. Recognizing that communities can be compared across space, paleoecologists implemented community studies across time in an effort to reconstruct past environments. This synecological approach to paleoenvironmental reconstruction may be thought of as holistic, since it is not restricted to a single mammal family. However, thorough explorations of how fossil and extant communities differ have revealed significant dissimilarities brought about by the taphonomic history of paleontological assemblages. Techniques have been developed for addressing differences between the modern comparative community sample and the paleontological sample to which it is compared, but recent research conducted by both neo- and paleoecologists has suggested that there are unappreciated differences between modern habitats, as well.

Keywords

Community analysis Ecological diversity Ecomorphology Niche Taxon-free Synecology 

Notes

Acknowledgements

KK and KL gratefully acknowledge Denise Su, Darin Croft and Scott Simpson for the invitation to participate in the “Latest Methods in Reconstructing Cenozoic Terrestrial Environments and Ecological Communities” symposium in Cleveland 2015. KK sincerely thanks the organizers for support and assistance with childcare during the symposium and for useful discussions throughout. We also thank Peter Andrews for his continued advice and insight.

References

  1. Alexander, R. M. (1977). Allometry of the limbs of antelopes (Bovidae). Journal of Zoology, London, 183, 125–146.Google Scholar
  2. Anderson, M. J., & Willis, T. J. (2003). Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology, 84, 511–525.Google Scholar
  3. Andrews, P. (1989). Paleoecology of Laetoli. Journal of Human Evolution, 18, 173–181.Google Scholar
  4. Andrews, P. (1990a). Owls, caves, and fossils. Chicago: The University of Chicago Press.Google Scholar
  5. Andrews, P. (1990b). Small mammal taphonomy. In E. H. Lindsey, V. Fahlbusch & P. Mein (Eds.), European Neogene mammal chronology (pp. 487–494). New York: Plenum Press.Google Scholar
  6. Andrews, P. (1996). Paleoecology and hominoid palaeoenvironments. Biological Reviews, 71, 257–300.Google Scholar
  7. Andrews, P., & Humphrey, L. (1999). African Miocene environments and the transition to early hominines. In T. G. Bromage & F. Schrenk (Eds.), African biogeography. Climate change and human evolution (pp. 282–300). Oxford: Oxford University Press.Google Scholar
  8. Andrews, P., & Nesbit Evans, E. (1979). The environment of Ramapithecus in Africa. Paleobiology, 5, 22–30.Google Scholar
  9. Andrews, P., & Van Couvering, J. H. (1975). Paleoenvironments in the East African Miocene. In F. Szalay (Ed.), Approaches to primate paleobiology (pp. 62–103). Basel: Karger.Google Scholar
  10. Andrews, P., Lord, J. M., & Nesbit Evans, E. M. (1979). Patterns of ecological diversity in fossil and modern mammalian faunas. Biological Journal of the Linnean Society, 11, 177–205.Google Scholar
  11. Ashley, G. M., Tactikos, J. C., & Owen, R. B. (2009). Hominin use of springs and wetlands: paleoclimate and archaeological records from Olduvai Gorge (1.79–1.74 Ma). Palaeogeography, Palaeoclimatology, Palaeoecology, 272, 1–16.Google Scholar
  12. Avery, D. M. (2007). Micromammals as palaeoenvironmental indicators of the southern African Quaternary. Transactions of the Royal Society of South Africa, 62, 17–23.Google Scholar
  13. Badgley, C., Bartels, W. S., Morgan, M. E., Behrensmeyer, A. K., & Raza, S. M. (1995). Taphonomy of vertebrate assemblages from the Paleogene of northwestern Wyoming and the Neogene of northern Pakistan. Palaeogeography, Palaeoclimatology, Palaeoecology, 115, 157–180.Google Scholar
  14. Barnosky, A. D., & Lindsey, E. L. (2010). Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quaternary International, 217, 10–29.Google Scholar
  15. Barnosky, A. D., Lindsey, E. L., Villavicencio, N. A., Bostelmann, E., Hadly, E. A., Wanket, J., et al. (2016). Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proceedings of the National Academy of Sciences, USA, 113, 856–861.Google Scholar
  16. Barr, W. A. (2018). Ecomorphology. In D. A. Croft, D. F. Su & S.W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 337–347). Cham: Springer.Google Scholar
  17. Barry, J. C., Morgan, M. E., Flynn, L. J., Pilbeam, D., Behrensmeyer, A. K., Raza, S. M., Khan, I. A., Badgley, C, Hicks, J., Kelley, J. (2002). Faunal and environmental change in the late Miocene Siwaliks of northern Pakistan. Paleobiology, 28, 1–71.Google Scholar
  18. Bedaso, Z. K., Wynn, J. G., Alemseged, Z., & Geraads, D. (2013). Dietary and paleoenvironmental reconstruction using stable isotopes of herbivore tooth enamel from middle Pliocene Dikika, Ethiopia: implication for Australopithecus afarensis habitat and food resources. Journal of Human Evolution, 64, 21–38.Google Scholar
  19. Behrensmeyer, A. K. (1975). Taphonomy and paleoecology in the hominid fossil record. Yearbook of Physical Anthropology, 19, 36–50.Google Scholar
  20. Behrensmeyer, A. K. (2015). Four million years of African herbivory. Proceedings of the National Academy of Sciences, USA, 112, 11428–11429.Google Scholar
  21. Behrensmeyer, A. K., & Hill, A. P. (1980). Fossils in the making: Vertebrate taphonomy and paleoecology. Chicago: The University of Chicago Press.Google Scholar
  22. Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D., & Wing, S. L. (1992). Terrestrial ecosystems through time: Evolutionary paleoecology of terrestrial plants and animals. Chicago: The University of Chicago Press.Google Scholar
  23. Blumenschine, R. J. (1988). An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. Journal of Archaeological Science, 15, 483–502.Google Scholar
  24. Blumenschine, R. J., & Peters, C. R. (1998). Archaeological predictions for hominid land use in the paleo-Olduvai Basin, Tanzania, during lowermost Bed II times. Journal of Human Evolution, 34, 565–607.Google Scholar
  25. Blumenschine, R. J., Peters, C. R., Masao, F. T., Clarke, R. L., Deino, A. L., Hay, R. L., et al. (2003). Late Pliocene Homo and hominid land use from western Olduvai Gorge, Tanzania. Science, 299, 1217–1221.Google Scholar
  26. Blumenschine, R. J., Masao, F. T., Stollhofen, H., Stanistreet, I. G., Bamford, M. K., Albert, R. M., et al. (2012a). Landscape distribution of Oldowan stone artifact assemblages across the fault compartments of the eastern Olduvai Lake Basin during early lowermost Bed II times. Journal of Human Evolution, 63, 384–394.Google Scholar
  27. Blumenschine, R. J., Stanistreet, I. G., & Masao, F. T. (2012b). Olduvai Gorge and the Olduvai landscape paleoanthroplogy project. Journal of Human Evolution, 63, 247–250.Google Scholar
  28. Brown, J. H. (1981). Two decades of homage to Santa Rosalia: toward a general theory of diversity. American Zoologist, 21, 877–888.Google Scholar
  29. Campisano, C. J., & Feibel, C. S. (2007). Connecting local environmental sequences to global climate patterns: evidence from the hominin-bearing Hadar Formation, Ethiopia. Journal of Human Evolution, 53, 515–527.Google Scholar
  30. Catibog-Singa, C., Catibog, C. S., & Heaney, L. R. (2006). Philippine biodiversity: Principles and practice. Haribon Foundation.Google Scholar
  31. Cerling, T. E., & Hay, R. L. (1986). An isotopic study of paleosol carbonates from Olduvai Gorge. Quaternary Research, 25, 63–78.Google Scholar
  32. Cerling, T. E., Andanje, S. A., Blumenthal, S. A., Brown, F. H., Chritz, K. L., Harris, J. M., et al. (2015). Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proceedings of the National Academy of Sciences, USA, 112, 11467–11472.Google Scholar
  33. Cione, A. L., Soibelzon, L., & Tonni, E. P. (2003). The broken zig-zag; Late Cenozoic large mammal and tortoise extinction in South America. Revista del Museo Argentino de Ciencias Naturales, Nueva Serie, 5, 1–19.Google Scholar
  34. Clarke, K. R., & Warwick, R. M. (1994). Change in marine communities: An approach to statistical analysis and interpretation. Primer-E Ltd: Plymouth, UK.Google Scholar
  35. Clarke, K. R., & Warwick, R. M. (2001). A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Marine Ecology Progress Series, 216, 265–278.Google Scholar
  36. Clyde, W. C., & Gingerich, P. D. (1998). Mammalian community response to the latest Paleocene thermal maximum: an isotaphonomic study in the northern Bighorn Basin, Wyoming. Geology, 26, 1011–1014.Google Scholar
  37. Coe, H. (2009). Atmospheric energy and the structure of the atmosphere. In C. N. Hewitt & A. V. Jackson (Eds.), Atmospheric science for environmental scientists (pp. 54–82). West Sussex: Wiley.Google Scholar
  38. Coe, M. (1980). The role of modern ecological studies in the reconstruction of palaeoenvironments in sub-Saharan Africa. In A. K. Behrensmeyer & A. P. Hill (Eds.), Fossils in the making: Vertebrate taphonomy and paleoecology (pp. 55–67). Chicago: The University of Chicago Press.Google Scholar
  39. Croft, D. A. (2001). Cenozoic environmental change in South American as indicated by mammalian body size distributions (cenograms). Diversity and Distributions, 7, 271–287.Google Scholar
  40. Croft, D. A. (2006). Do marsupials make good predators? Insights from predator-prey diversity ratios. Evolutionary Ecology Research, 8, 1193–1214.Google Scholar
  41. Croft, D. A. (2013). What constitutes a fossil mammal community in the early Miocene Santa Cruz Formation? Journal of Vertebrate Paleontology, 33, 401–409.Google Scholar
  42. Croft, D. A., Flynn, J. J., & Wyss, A. R. (2008). The Tinguiririca Fauna of Chile and the early stages of “modernization” of South American mammal faunas. Arquivos do Museu Nacional, 66, 191–211.Google Scholar
  43. Cushing, A. E. (2002). The landscape zooarchaeology and paleontology of Plio-Pleistocene Olduvai, Tanzania and their implications for early hominid ecology. Ph.D. Dissertation, Rutgers, the State University of New Jersey.Google Scholar
  44. Damuth, J., & MacFadden, B. J. (1990). Body size in mammalian paleobiology: Estimation and biological implications. Cambridge: Cambridge University Press.Google Scholar
  45. De Vivo, M., & Carmignotto, A. P. (2004). Holocene vegetation change and the mammal faunas of South America and Africa. Journal of Biogeography, 31, 943–957.Google Scholar
  46. Deino, A. L. (2012). 40Ar/39Ar dating of Bed I, Olduvai Gorge, Tanzania, and the chronology of early Pleistocene climate change. Journal of Human Evolution, 63, 251–273.Google Scholar
  47. Dunn, R. E., Strömberg, C. A. E., Madden, R. H., Kohn, M. J., & Carlini, A. A. (2015). Linked canopy, climate, and faunal change in the Cenozoic of Patagonia. Science, 347, 258–261.Google Scholar
  48. Dunn, R. H. (2018). Functional morphology of the postcranial skeleton. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 23–36). Cham: Springer.Google Scholar
  49. Eisenberg, J. F. (1981). The mammalian radiations: An analysis of trends in evolution, adaptation, and behavior. Chicago: The University of Chicago Press.Google Scholar
  50. Eiten, G. (1992). How names are used for vegetation. Journal of Vegetation Science, 3, 419–424.Google Scholar
  51. Elton, C. S. (1927). Animal ecology. New York: MacMillan Co.Google Scholar
  52. Eronen, J. T., Puolamäki, K., Liu, L., Lintulaakso, K., Damuth, J., Janis, C., et al. (2010a). Precipitation and large herbivorous mammals II: application to fossil data. Evolutionary Ecology Research, 12, 235–248.Google Scholar
  53. Eronen, J. T., Polly, P. D., Fred, M., Damuth, J., Frank, D. C., Mosbrugger, V., et al. (2010b). Ecometrics: the traits that bind the past and present together. Integrative Zoology, 5, 88–101.Google Scholar
  54. Evans, A. R., & Pineda-Munoz, S. (2018). Inferring mammal dietary ecology from dental morphology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 37–51). Cham: Springer.Google Scholar
  55. Faith, J. T., Tryon, C. A., Peppe, D. J., Beverly, E. J., & Blegen, N. (2014). Biogeographic and evolutionary implications of an extinct late Pleistocene impala from the Lake Victoria Basin, Kenya. Journal of Mammalian Evolution, 21, 213–222.Google Scholar
  56. Fernandez-Jalvo, Y., Denys, C., Andrews, P., Williams, T., Dauphin, Y., & Humphrey, L. (1998). Taphonomy and paleoecology of Olduvai Bed-I (Pleistocene, Tanzania). Journal of Human Evolution, 34, 137–172.Google Scholar
  57. Flagstad, Ø., Syversten, P. O., Stenseth, N. C., & Jakobsen, K. S. (2001). Environmental change and rates of evolution: the phylogeographic pattern within the hartebeest complex as related to climatic variation. Proceedings of the Royal Society B, 268, 667–677.Google Scholar
  58. Fleming, T. H. (1973). Numbers of mammal species in North and Central American forest communities. Ecology, 54, 555–563.Google Scholar
  59. Flynn, J. J., Wyss, A. R., Croft, D. A., & Charrier, R. (2003). The Tinguiririca Fauna, Chile: biochronology, paleoecology, biogeography, and a new earliest Oligocene South American Land Mammal ‘Age’. Palaeogeography, Palaeoclimatology Palaeoecology, 195, 229–259.Google Scholar
  60. Fortelius, M. (1990). Problems using fossil teeth to estimate body sizes of extinct mammals. In J. Damuth & B. J. MacFadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 207–288). New York: Cambridge University Press.Google Scholar
  61. Fortelius, M., Eronen, J., Jernvall, J., Liu, L., Pushkina, D., Rinne, J., et al. (2002). Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evolutionary Ecology Research, 4, 1005–1016.Google Scholar
  62. Fortelius, M., Žliobaitė, I., Kaya, F., Bibi, F., Bobe, R., Leakey, L., et al. (2016). An ecometric analysis of the fossil mammal record of the Turkana Basin. Philosophical Transactions of the Royal Society B, 371, 20150232.Google Scholar
  63. Fukami, T. (2015). Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics, 46, 1–23.Google Scholar
  64. Geise, L., Pereira, L. G., Bossi, D. E. P., & Bergallo, H. G. (2004). Pattern of elevational distribution and richness of non volant mammals in Itatiaia National Park and its surroundings, in southeastern Brazil. Brazilian Journal of Biology, 64, 599–612.Google Scholar
  65. Gentry, A. H. (1988). Changes in plant community diversity and floristic composition on environmental and geographical gradients? Annals of the Missouri Botanical Garden, 75, 1–34.Google Scholar
  66. Gentry, A. W., & Gentry, A. (1978). Fossil Bovidae (Mammalia) of Olduvai Gorge, Tanzania, Part II. Bulletin of the British Museum of Natural History (Geology), 30, 1–83.Google Scholar
  67. Gillman, L. N., Keeling, D. J., Ross, H. A., & Wright, S. D. (2009). Latitude, elevation and the tempo of molecular evolution in mammals. Proceedings of the Royal Society of London B: Biological Sciences, 276, 3353–3359.Google Scholar
  68. Gingerich, P. D. (1989). New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage. University of Michigan Papers on Paleontology, 28, 1–97.Google Scholar
  69. Gingerich, P. D., Smith, B. H., & Rosenberg, K. (1982). Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. American Journal of Physical Anthropology, 58, 81–100.Google Scholar
  70. Gould, S. J. (1975). On the scaling of tooth size in mammals. American Zoologist, 15, 351–362.Google Scholar
  71. Graham, C. H., & Fine, P. V. (2008). Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecology letters, 11, 1265–1277.Google Scholar
  72. Green, J. L., & Croft, D. A. (2018). Using dental mesowear and microwear for dietary inference: a review of current techniques and applications. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 53–73). Cham: Springer.Google Scholar
  73. Greenacre, M. J. (1984). Theory and applications of correspondence analysis. New York: Academic Press.Google Scholar
  74. Greenacre, M. J., & Vrba, E. S. (1984). Graphical display and interpretation of antelope census data in African wildlife areas, using correspondence analysis. Ecology, 65, 984–997.Google Scholar
  75. Hanya, G., Stevenson, P., van Noordwijk, M., Te Wong, S., Kanamori, T., Kuze, N., et al. (2011). Seasonality in fruit availability affects frugivorous primate biomass and species richness. Ecography, 34, 1009–1017.Google Scholar
  76. Happold, D. C. D. (1987). The mammals of Nigeria. Oxford: Clarendon Press.Google Scholar
  77. Harrison, J. L. (1962). The distribution of feeding habits among animals in a tropical rain forest. Journal of Animal Ecology, 31, 53–63.Google Scholar
  78. Harrison, T. (2011). Laetoli revisited: renewed paleontological and geological investigations at localities on the Eyasi Plateau in northern Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 1–15). Dordrecht: Springer Press.Google Scholar
  79. Hay, R. L. (1976). The geology of Olduvai Gorge: A study of sedimentation in a semiarid basin. Berkeley: University of California Press.Google Scholar
  80. Hay, R. L. (1990). Olduvai Gorge: a case history in the interpretation of hominid paleoenvironments in East Africa. In L. F. Laporte (Ed.), Establishment of a geological framework for paleoanthropology (pp. 23–37). Geological Society of America Special Paper 242.Google Scholar
  81. Hessler, I., Dupont, L., Bonnefille, R., Behling, H., González, C., Helmens, K. F., et al. (2010). Millennial-scale changes in vegetation records from tropical Africa and South America during the last glacial. Quaternary Science Reviews, 29, 2882–2899.Google Scholar
  82. Higgins, P. (2018). Isotope ecology from biominerals. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 99–120). Cham: Springer.Google Scholar
  83. Hopkins, S. S. B. (2008). Reassessing the mass of exceptionally large rodents using toothrow length and area as proxies for body mass. Journal of Mammalogy, 89, 232–243.Google Scholar
  84. Hopkins, S. S. B. (2018). Estimation of body size in fossil mammals. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 7–22). Cham: Springer.Google Scholar
  85. Hutchinson, G. E. (1957). The multivariate niche. Cold Spring Harbor Symposium of Quantitative Biology, 22, 415–421.Google Scholar
  86. Hutchinson, G. E. (1959). Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93, 145–159.Google Scholar
  87. Janis, C. M. (1993). Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology and Systematics, 24, 467–500.Google Scholar
  88. Kappelman, J. (1984). Plio-Pleistocene environments of Bed I and lower Bed II, Olduvai Gorge, Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology, 48, 171–196.Google Scholar
  89. Kappelman, J. (1988). Morphology and locomotor adaptations of the bovid femur in relation to habitat. Journal of Morphology, 198, 119–130.Google Scholar
  90. Karr, J. R. (1971). Structure of avian communities in selected Panama and Illinois habitats. Ecological Monographs, 41, 207–233.Google Scholar
  91. Kay, R. F., & Madden, R. H. (1997). Mammals and rainfall: paleoecology of the middle Miocene at La Venta (Colombia, South America). Journal of Human Evolution, 32, 161–199.Google Scholar
  92. Kindt, R, & Coe, R. (2005). Three diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. Nairobi: World Agroforestry Centre (ICRAF).Google Scholar
  93. Kingston, J. D., & Harrison, T. (2007). Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: implications for early hominin paleoecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 243, 272–306.Google Scholar
  94. Kovarovic, K., Andrews, P., & Aiello, L. C. (2002). The palaeoecology of the Upper Ndolanya Beds at Laetoli, Tanzania. Journal of Human Evolution, 43, 395–418.Google Scholar
  95. Kovarovic, K., Aiello, L. C., Cardini, A., & Lockwood, C. A. (2011). Discriminant function analyses in archaeology: are classifications rates too good to be true? Journal of Archaeological Science, 38, 3006–3018.Google Scholar
  96. Kovarovic, K., Slepkov, R., & McNulty, K. P. (2013). Ecological continuity between Lower and Upper Bed II, Olduvai Gorge, Tanzania. Journal of Human Evolution, 64, 538–555.Google Scholar
  97. Kurtén, B. (1952). The Chinese Hipparion fauna. Commentationes Biological, Societas Scientiarum Fennica, 13, 1–82.Google Scholar
  98. Lawesson, J. E. (1994). Some comments on the classification of African vegetation. Journal of Vegetation Science, 5, 441–444.Google Scholar
  99. Leakey, M. D. (1971). Olduvai Gorge: Excavations in Beds I and II 1960–1963 (Vol. 3). Cambridge: Cambridge University Press.Google Scholar
  100. Leakey, M. D., & Harris, J. M. (Eds.). (1987). Laetoli: A Pliocene site in northern Tanzania. Oxford: Clarendon Press.Google Scholar
  101. Legendre, S. (1986). Analysis of mammalian communities from the late Eocene and Oligocene of Southern France. Paleovertebrata, 16, 191–212.Google Scholar
  102. Legendre, S. (1989). Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d’Europe occidentale: structures, milieux et evolution. Münchner Geowissenschafliche Abhandlungen A, 16, 1–110.Google Scholar
  103. Lintulaakso, K., & Kovarovic, K. (2016). Diet and locomotion, but not body size, differentiate mammal communities in worldwide tropical ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 454, 20–29.Google Scholar
  104. Lomolino, M. V., Riddle, B. R., Brown, J. H., & Brown, J. H. (2006). Biogeography. Sunderland: Sinauer Associates.Google Scholar
  105. Losos, J. B. (1996). Phylogenetic perspectives on community ecology. Ecology, 77, 1344–1354.Google Scholar
  106. Louys, J. (2007). Ecology and extinction of southeast Asia’s megafauna. Ph.D. Dissertation, University of New South Wales.Google Scholar
  107. Louys, J., Travouillon, K. J., Bassarova, M., & Tong, H. (2009). The use of protected natural areas in palaeoecological analyses: assumptions, limitations and application. Journal of Archaeological Science, 36, 2274–2288.Google Scholar
  108. Louys, J., Meloro, C., Elton, S., Ditchfield, P., & Bishop, L. C. (2011). Mammal community structure correlates with arboreal heterogeneity in faunally and geographically diverse habitats: implications for community convergence. Global Ecology and Biogeography, 20, 717–729.Google Scholar
  109. Louys, J., Meloro, C., Elton, S., Ditchfield, P., & Bishop, L. C. (2015). Analytical framework for reconstructing heterogeneous environmental variables from mammal community structure. Journal of Human Evolution, 78, 1–11.Google Scholar
  110. MacArthur, R. H., & Wilson, E. O. (1967). Theory of island biogeography. Princeton: Princeton University Press.Google Scholar
  111. Mares, M. A., & Willig, M. R. (1994). Inferring biome associations of Recent mammals from samples of temperate and tropical faunas: paleoecological considerations. Historical Biology, 8, 31–48.Google Scholar
  112. Meloro, C., & Kovarovic, K. (2013). Spatial and ecometric analyses of the Plio-Pleistocene large mammal communities of the Italian peninsula. Journal of Biogeography, 40, 1451–1462.Google Scholar
  113. Mendoza, M., Goodwin, B., & Criado, C. (2004). Emergence of community structure in terrestrial mammal-dominated ecosystems. Journal of Theoretical Biology, 230, 203–214.Google Scholar
  114. Nesbit Evans, E. M., Van Couvering, J. A. H., & Andrews, P. (1981). Paleoecology of Miocene sites in western Kenya. Journal of Human Evolution, 10, 99–116.Google Scholar
  115. Odum, E. P. (1953). Fundamentals of ecology. Philadelphia: W.B. Saunders Company.Google Scholar
  116. Odum, E. P. (1959). Fundamentals of ecology (2nd ed.). Philadelphia: W.B. Saunders Company.Google Scholar
  117. Olson, J. S., Watts, J. A., & Allison, L. J. (1983). Carbon in live vegetation of major world ecosystems. Oak Ridge: Oak Ridge National Laboratory.Google Scholar
  118. Olson, J. S., Watts, J. A., & Allison, L. J. (1985). Major world ecosystem complexes ranked by carbon in live vegetation: A database. Oak Ridge: Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory.Google Scholar
  119. Overpeck, J., Whitlock, C., & Huntley, B. (2003). Terrestrial biosphere dynamics in the climate system: past and future. In K. D. Alverson, R. Bradley & T. F. Peterson (Eds.), Paleoclimate, global change and the future (pp. 81–103). Berlin: Springer.Google Scholar
  120. Pianka, E. R. (1970). On r-and K-selection. The American Naturalist, 104, 592–597.Google Scholar
  121. Pimm, S. L., & Lawton, J. H. (1978). On feeding on more than one trophic level. Nature, 275, 542–544.Google Scholar
  122. Pineda-Munoz, S., & Alroy, J. (2014). Dietary characterization of terrestrial mammals. Proceedings of the Royal Society B: Biological Sciences, 281, 20141173.Google Scholar
  123. Pineda-Munoz, S., Evans, A. R., & Alroy, J. (2016). The relationship between diet and body mass in terrestrial mammals. Paleobiology, 42, 659–669.Google Scholar
  124. Potts, R. (1988). Early hominid activities at Olduvai Gorge. New York: Aldine de Gruyter.Google Scholar
  125. Reed, D. N. (2007). Serengeti micromammals and their implications for Olduvai paleoenvironments. In R. Bobe, Z. Alemseged & A. K. Behrensmeyer (Eds.), Hominin environments in the East African Pliocene: An assessment of the faunal evidence (pp. 217–255). Dordrecht: Springer.Google Scholar
  126. Reed, K. E. (1997). Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution, 32, 289–322.Google Scholar
  127. Reed, K. E. (1998). Using large mammal communities to examine ecological and taxonomic structure and predict vegetation in extant and extinct assemblages. Paleobiology, 24, 384–408.Google Scholar
  128. Reed, K. E. (2008). Paleoecological patterns at the Hadar hominin site, Afar Regional State, Ethiopia. Journal of Human Evolution, 54, 743–768.Google Scholar
  129. Rodríguez, J. (1999). Use of cenograms in mammalian palaeoecology. A critical review. Lethaia, 32, 331–347.Google Scholar
  130. Rodríguez, J., Hortal, J., & Nieto, M. (2006). An evaluation of the influence of environment and biogeography on community structure: the case of Holarctic mammals. Journal of Biogeography, 33, 291–303.Google Scholar
  131. Ruddiman, W. F. (2007). Earth’s climate: Past and future. New York: Macmillan.Google Scholar
  132. Schick, R. S., Halpin, P. N., Read, A. J., Urban, D. L., Best, B. D., Good, C. P., et al. (2011). Community structure in pelagic marine mammals at large spatial scales. Marine Ecology Progress Series, 434, 165–181.Google Scholar
  133. Schrenk, F., Bromage, T. G., Gorthner, A., & Sandrock, O. (1995). Paleoecology of the Malawi Rift: vertebrate and invertebrate faunal contexts of the Chiwondo Beds, northern Malawi. Journal of Human Evolution, 28, 59–70.Google Scholar
  134. Scott, K. M. (1990). Postcranial dimensions of ungulates as predictors of body mass. In J. Damuth & B. J. MacFadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 301–355). New York: Cambridge University Press.Google Scholar
  135. Semken, H. A., Jr., Graham, R. W., & Stafford, T. W., Jr. (2010). AMS 14C analysis of Late Pleistocene non-analog faunal components from 21 cave deposits in southeastern North America. Quaternary International, 217, 240–255.Google Scholar
  136. Shipman, P., & Harris, J. (1988). Habitat preference and paleoecology of Australopithecus boisei in Eastern Africa. In F. E. Grine (Ed.), Evolutionary history of the “robust” australopithecines (pp. 343–381). New York: Aldine de Gruyter.Google Scholar
  137. Simpson, G. G. (1964). Species density of North American Recent mammals. Systematic Zoology, 13, 57–73.Google Scholar
  138. Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research. New York: W. H. Freeman and Company.Google Scholar
  139. Soligo, C., & Andrews, P. (2005). Taphonomic bias, taxonomic bias and historical non-equivalence of faunal structure in early hominin localities. Journal of Human Evolution, 49, 206–229.Google Scholar
  140. Sponheimer, M., & Lee-Thorp, J. A. (2003). Using carbon isotope data of fossil bovid communities for paleoenvironmental reconstruction. South African Journal of Science, 99, 273–275.Google Scholar
  141. Stanistreet, I. G. (2012). Fine resolution of early hominin time, Beds I and II, Olduvai Gorge, Tanzania. Journal of Human Evolution, 63, 300–308.Google Scholar
  142. Stoetzel, E., Marion, L., Nespoulet, R., El Hajraoui, M. A., & Denys, C. (2011). Taphonomy and paleoecology of the late Pleistocene to middle Holocene small mammal succession of El Harhoura 2 cave (Rabat-Témara, Morocco). Journal of Human Evolution, 60, 1–33.Google Scholar
  143. Strömberg, C. A. (2011). Evolution of grasses and grassland ecosystems. Annual Review of Earth and Planetary Sciences, 39, 517–544.Google Scholar
  144. Su, D. F. (2005). The paleoecology of Laetoli, Tanzania: Evidence from the mammalian fauna of the Upper Laetolil Beds. Ph.D. Dissertation, New York University.Google Scholar
  145. Su, D. F. (2011). Large mammal evidence for the paleoenvironment of the Upper Laetoli and Upper Ndolanya beds of Laetoli, Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 381–392). Dordrecht: Springer.Google Scholar
  146. Su, D. F. (2016). The taphonomy and paleoecology of Korsi Dora Vertebrate Locality 1, Woranso-Mille Study Area, Ethiopia. In Y. Haile-Selassie & D. F. Su (Eds.), The postcranial anatomy of Australopithecus afarensis: New insights from KSD-VP-1/1 (pp. 25–37). New York: Springer.Google Scholar
  147. Su, D. F., & Haile-Selassie, Y. (in press). Mosaic habitats at Woranso-Mille (Ethiopia) during the Pliocene and implications for Australopithecus paleoecology. In S. Reynolds & R. Bobe (Eds.), African paleoecology and human evolution. Cambridge: Cambridge University Press.Google Scholar
  148. Su, D. F., & Harrison, T. (2007). The paleoecology of the Upper Laetoli Beds at Laetoli. In R. Bobe, Z. Alemseged & A. K. Behrensmeyer (Eds.), Hominin environments in the East African Pliocene: An assessment of the faunal evidence (pp. 279–313). Dordrecht: Springer.Google Scholar
  149. Su, D. F, & Harrison, T. (2015). The paleoecology of the upper Laetolil Beds, Laetoli, Tanzania: A review and synthesis. Journal of African Earth Sciences 101, 405–419.Google Scholar
  150. Su, D. F., Ambrose, S. H., Degusta, D., & Haile-Selassie, Y. (2009). Paleoenvironment. In Y. Haile-Selassie & G. WoldeGabriel (Eds.), Ardipithecus kadabba: Late Miocene evidence from the Middle Awash, Ethiopia (pp. 521–547). Berkeley: University of California Press.Google Scholar
  151. Thibault, K. M., & Brown, J. H. (2008). Impact of an extreme climatic event on community assembly. Proceedings of the National Academy of Sciences, USA, 105, 3410–3415.Google Scholar
  152. Thibault, K. M., White, E. P., & Morgan Ernest, S. K. (2004). Temporal dynamics in the structure and composition of a desert rodent community. Ecology, 85, 2649–2655.Google Scholar
  153. Townsend, K. E. B., Rasmussen, D. T., Murphey, P. C., & Evanoff, E. (2010). Middle Eocene habitat shifts in the North American western interior: A case study. Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 144–158.Google Scholar
  154. Van Couvering, J. A. H. (1980). Community evolution in East Africa during the late Cenozoic. In A. K. Behrensmeyer & A. P. Hill (Eds.), Fossils in the making: Vertebrate taphonomy and paleoecology (pp. 272–298). Chicago: The University of Chicago Press.Google Scholar
  155. Voorhies, M. R. (1969a). Sampling difficulties in reconstructing late Tertiary mammalian communities. Proceedings of the North American Paleontological Convention, Part E, pp. 454–468.Google Scholar
  156. Voorhies, M. R. (1969b). Taphonomy and population dynamics of an early Pliocene vertebrate fauna, Knox County, Nebraska. Laramie: University of Wyoming.Google Scholar
  157. Warton, D. I., & Hui, F. K. (2011). The arcsine is asinine: the analysis of proportions in ecology. Ecology, 92, 3–10.Google Scholar
  158. Warwick, R. M., & Clarke, K. R. (1995). New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Marine Ecology Progress Series, 129, 301–305.Google Scholar
  159. Western, D., & Behrensmeyer, A. K. (2009). Bone assemblages track animal community structure over 40 years in an African savannah ecosystem. Science, 324, 1061–1064.Google Scholar
  160. White, F. (1983). The vegetation of Africa: A descriptive memoir to accompany the Unesco/AETFAT/UNSO vegetation map of Africa. Paris: Unesco.Google Scholar
  161. White, T. D., Ambrose, S. H., Suwa, G., Su, D. F., DeGusta, D., Bernor, R. L., et al. (2009). Macrovertebrate paleontology and the Pliocene habitat of Ardipithecus ramidus. Science, 326, 87–93.Google Scholar
  162. Williams, S. E., Marsh, H., & Winter, J. (2002). Spatial scale, species diversity, and habitat structure: small mammals in Australian tropical rain forest. Ecology, 83, 1317–1329.Google Scholar
  163. Wilson, V. J. (1975). Mammals of the Wankie National Park. Museum Memoirs of the National Museums and Monuments of Rhodesia, 4, 1–147.Google Scholar
  164. Vrba, E. S. (1980). The significance of bovid remains as indicators of environment and predation patterns. In A. K. Behrensmeyer & A. P. Hill (Eds.), Fossils in the making: Vertebrate taphonomy and paleoecology (pp. 247–271). Chicago: The University of Chicago Press.Google Scholar
  165. Yodzis, P. (1984). How rare is omnivory? Ecology, 65, 321–323.Google Scholar
  166. Žliobaitė, I., Rinne, J., Tóth, A. B., Mechenich, M., Liu, L., Behrensmeyer, A. K., et al. (2016). Herbivore teeth predict climatic limits in Kenyan ecosystems. Proceedings of the National Academy of Sciences, USA, 113, 12751–12756.Google Scholar
  167. Zuur, A. F., Leno, E. N., & Smith, G. M. (2007). Analysing ecological data. New York: Springer.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kris Kovarovic
    • 1
  • Denise F. Su
    • 2
  • Kari Lintulaakso
    • 3
  1. 1.Department of AnthropologyDurham UniversityDurhamUnited Kingdom
  2. 2.Department of Paleobotany and PaleoecologyCleveland Museum of Natural HistoryClevelandUnited States of America
  3. 3.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations