• W. Andrew BarrEmail author
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)


The goal of ecomorphology is to identify morphological variation that is related to ecology (e.g., dietary preference or locomotor habits), with the aim of inferring ecological traits from morphological traits. This chapter reviews the basic principles of ecomorphology and provides many examples of ecomorphic studies in a range of taxa, with an emphasis on bovids (antelope and relatives). The focus of this chapter is on “applied” ecomorphology, which refers to studies that use ecomorphology as a tool to reconstruct environments. The chapter summarizes some of the strengths and weaknesses of the applied ecomorphic approach, and discusses future directions for studies using this methodology.


Functional morphology Environmental reconstruction Functional traits Bovidae Phylogenetic signal 


  1. Alexander, R. M., & Bennett, M. B. (1987). Some principles of ligament function, with examples from the tarsal joints of the sheep (Ovis aries). Journal of Zoology, 211, 487–504.Google Scholar
  2. Andrews, P., & Hixson, S. (2014). Taxon-free methods of palaeoecology. Annales Zoologici Fennici, 51, 269–284.Google Scholar
  3. Andrews, P., Lord, J. M., & Nesbit-Evans, E. M. (1979). Patterns of ecological diversity in fossil and modern mammalian faunas. Biological Journal of the Linnean Society, 11, 177–205.Google Scholar
  4. Baker, G., Jones, L. H. P., & Wardrop, I. D. (1959). Cause of wear in sheeps’ teeth. Nature, 184, 1583–1584.Google Scholar
  5. Bargo, M. S., & Vizcaíno, S. F. (2008). Paleobiology of Pleistocene ground sloths (Xenarthra, Tardigrada): biomechanics, morphogeometry and ecomorphology applied to the masticatory apparatus. Ameghiniana, 45, 175–196.Google Scholar
  6. Bargo, M. S., De Iuliis, G., & Vizcaíno, S. F. (2006a). Hypsodonty in Pleistocene ground sloths. Acta Palaeontologica Polonica, 51, 53.Google Scholar
  7. Bargo, M. S., Toledo, N., & Vizcaíno, S. F. (2006b). Muzzle of South American Pleistocene ground sloths (Xenarthra, Tardigrada). Journal of Morphology, 267, 248–263.Google Scholar
  8. Barr, W. A. (2014). Functional morphology of the bovid astragalus in relation to habitat: controlling phylogenetic signal in ecomorphology. Journal of Morphology, 275, 1201–1216.Google Scholar
  9. Barr, W. A. (2015). Paleoenvironments of the Shungura Formation (Plio-Pleistocene: Ethiopia) based on ecomorphology of the bovid astragalus. Journal of Human Evolution, 88, 97–107.Google Scholar
  10. Barr, W. A., & Scott, R. (2014). Phylogenetic comparative methods complement discriminant function analysis in ecomorphology. American Journal of Physical Anthropology, 153, 663–674.Google Scholar
  11. Bernardes, C., Sicuro, F. L., Avilla, L. S., & Pinheiro, A. E. P. (2013). Rostral reconstruction of South American hippidiform equids: new anatomical and ecomorphological inferences. Acta Palaeontologica Polonica, 58, 669–678.Google Scholar
  12. Bishop, L., Hill, A., & Kingston, J. (1999). Paleoecology of Suidae from the Tugen Hills, Baringo, Kenya. In P. Andrews & P. Banham (Eds.), Late Cenozoic environments and hominid evolution: A tribute to Bill Bishop (pp. 99–111). London: Geological Society, London.Google Scholar
  13. Bishop, L. C., King, T., Hill, A., & Wood, B. (2006). Palaeoecology of Kolpochoerus heseloni (=K. limnetes): a multiproxy approach. Transactions of the Royal Society of South Africa, 61, 81–88.Google Scholar
  14. Bock, W. J. (1989). From biologische Anatomie to ecomorphology. Netherlands Journal of Zoology, 40, 254–277.Google Scholar
  15. Bock, W. J. (1994). Concepts and methods in ecomorphology. Journal of Biosciences, 19, 403–413.Google Scholar
  16. Bock, W. J., & von Wahlert, G. (1965). Adaptation and the form-function complex. Evolution, 19, 269–299.Google Scholar
  17. Cerling, T. E., Andanje, S. A., Blumenthal, S. A., Brown, F. H., Chritz, K. L., Harris, J. M., et al. (2015). Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proceedings of the National Academy of Sciences, USA, 112, 11467–11472.Google Scholar
  18. Chen, M., & Wilson, G. P. (2015). A multivariate approach to infer locomotor modes in Mesozoic mammals. Paleobiology, 41, 280–312.Google Scholar
  19. Clauss, M., Kaiser, T., & Hummel, J. (2008). The morphophysiological adaptations of browsing and grazing mammals. In I. J. Gordon & H. H. T. Prins (Eds.), The ecology of browsing and grazing. Ecological Studies, 195, 47–88.Google Scholar
  20. Croft, D. A., Flynn, J. J., & Wyss, A. R. (2008). The Tinguiririca fauna of Chile and the early stages of “modernization” of South American mammal faunas. Arquivos do Museu Nacional, 66, 191–211.Google Scholar
  21. Curran, S. C. (2012). Expanding ecomorphological methods: geometric morphometric analysis of Cervidae post-crania. Journal of Archaeological Science, 39, 1172–1182.Google Scholar
  22. Curran, S. C. (2015). Exploring Eucladoceros ecomorphology using geometric morphometrics. The Anatomical Record, 298, 291–313.Google Scholar
  23. Curran, S. C. (2018). Three-dimensional geometric morphometrics in paleoecology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 317–335). Cham: Springer.Google Scholar
  24. Damuth, J., & Janis, C. M. (2011). On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. Biological Reviews, 86, 733–758.Google Scholar
  25. Damuth, J., & Janis, C. M. (2014). A comparison of observed molar wear rates in extant herbivorous mammals. Annales Zoologici Fennici, 51, 188–200.Google Scholar
  26. DeGusta, D., & Vrba, E. (2003). A method for inferring paleohabitats from the functional morphology of bovid astragali. Journal of Archaeological Science, 30, 1009–1022.Google Scholar
  27. DeGusta, D., & Vrba, E. (2005). Methods for inferring paleohabitats from the functional morphology of bovid phalanges. Journal of Archaeological Science, 32, 1099–1113.Google Scholar
  28. Dunn, R. H. (2018). Functional morphology of the postcranial skeleton. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 23–36). Cham: Springer.Google Scholar
  29. du Plessis, W. P. (1999). Linear regression relationships between NDVI, vegetation and rainfall in Etosha National Park, Namibia. Journal of Arid Environments, 42, 235–260.Google Scholar
  30. Elton, S. (2001). Locomotor and habitat classification of cercopithecoid postcranial material from Sterkfontein Member 4, Bolt’s Farm and Swartkrans Members 1 and 2, South Africa. Palaeontologia Africana, 37, 115–126.Google Scholar
  31. Elton, S. (2002). A reappraisal of the locomotion and habitat preference of Theropithecus oswaldi. Folia Primatologica, 73, 252–280.Google Scholar
  32. Elton, S., Jansson, A.-U., Meloro, C., Louys, J., Plummer, T. W., & Bishop, L. C. (2016). Exploring morphological generality in the Old World monkey postcranium using an ecomorphological framework. Journal of Anatomy, 228, 534–560.Google Scholar
  33. Eronen, J. T., Polly, P. D., Fred, M., Damuth, J., Frank, D. C., Mosbrugger, V., et al. (2010a). Ecometrics: the traits that bind the past and present together. Integrative Zoology, 5, 88–101.Google Scholar
  34. Eronen, J. T., Puolamäki, K., Liu, L., Lintulaakso, K., Damuth, J., Janis, C. M., et al. (2010b). Precipitation and large herbivorous mammals I: estimates from present-day communities. Evolutionary Ecology Research, 12, 217–233.Google Scholar
  35. Evans, A. R., & Pineda-Munoz, S. (2018). Inferring mammal dietary ecology from dental morphology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 37–51). Cham: Springer.Google Scholar
  36. Faith, J. T., Potts, R., Plummer, T. W., Bishop, L. C., Marean, C. W., & Tryon, C. A. (2012). New perspectives on middle Pleistocene change in the large mammal faunas of East Africa: Damaliscus hypsodon sp. nov. (Mammalia, Artiodactyla) from Lainyamok, Kenya. Palaeogeography, Palaeoclimatology, Palaeoecology, 361–362, 84–93.Google Scholar
  37. Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.Google Scholar
  38. Figueirido, B., MacLeod, N., Krieger, J., De Renzi, M., Pérez-Claros, J. A., & Palmqvist, P. (2011). Constraint and adaptation in the evolution of carnivoran skull shape. Paleobiology, 37, 490–518.Google Scholar
  39. Flynn, J. J., Wyss, A. R., Croft, D. A., & Charrier, R. (2003). The Tinguiririca Fauna, Chile: biochronology, paleoecology, biogeography, and a new earliest Oligocene South American Land Mammal “Age”. Palaeogeography, Palaeoclimatology, Palaeoecology, 195, 229–259.Google Scholar
  40. Fortelius, M. (1985). Ungulate cheek teeth: developmental, functional, and evolutionary interrelations. Acta Zoologica Fennica, 180, 1–76.Google Scholar
  41. Fortelius, M., Eronen, J., Jernvall, J., Liu, L., Pushkina, D., Rinne, J., et al. (2002). Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evolutionary Ecology Research, 4, 1005–1016.Google Scholar
  42. Gebo, D. L., & Sargis, E. J. (1994). Terrestrial adaptations in the postcranial skeletons of guenons. American Journal of Physical Anthropology, 93, 341–371.Google Scholar
  43. Gordon, I. J., & Prins, H. H. T. (Eds.). (2008). The ecology of browsing and grazing. Ecological Studies (Vol. 195). Berlin: Springer.Google Scholar
  44. Gosselin-Ildari, A. (2013). The evolution of cercopithecoid locomotion: A morphometric, phylogenetic, and character mapping approach. Ph.D. Dissertation, Stony Brook University.Google Scholar
  45. Hoffman, J. M., Fraser, D., & Clementz, M. T. (2015). Controlled feeding trials with ungulates: a new application of in vivo dental molding to assess the abrasive factors of microwear. Journal of Experimental Biology, 218, 1538–1547.Google Scholar
  46. Hofmann, R. R., & Stewart, D. R. M. (1972). Grazer or browser: a classification based on the stomach-structure and feeding habits of East African ruminants. Mammalia, 36, 226–240.Google Scholar
  47. Jacobs, B. F., Kingston, J. D., & Jacobs, L. L. (1999). The origin of grass-dominated ecosystems. Annals of the Missouri Botanical Garden, 86, 590–643.Google Scholar
  48. Janis, C. M. (1988). An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preference. In D. E. Russell, J. P. Santoro & D. Sigogneau-Russell (Eds.), Teeth revisited: Proceedings of the VII international symposium on dental morphology, Mémoirs de Museé d’Histoire Naturelle, Paris, Serie C, Volume 53 (pp. 371–391). Paris: Editions du Muséum.Google Scholar
  49. Janis, C. M. (1990). Correlation of cranial and dental variables with body size in ungulates and macropodids. Memoirs of The Queensland Museum, 28, 349–366.Google Scholar
  50. Janis, C. M. (2008). An evolutionary history of browsing and grazing ungulates. In I. J. Gordon & H. H. T. Prins (Eds.), The ecology of browsing and grazing. Ecological Studies, 195, 21–45.Google Scholar
  51. Janis, C. M., & Ehrhardt, D. (1988). Correlation of relative muzzle width and relative incisor width with dietary preference in ungulates. Zoological Journal of the Linnean Society, 92, 267–284.Google Scholar
  52. Janis, C. M., & Fortelius, M. (1988). On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biological Reviews of the Cambridge Philosophical Society, 63, 197.Google Scholar
  53. Janis, C. M., Damuth, J., & Theodor, J. M. (2000). Miocene ungulates and terrestrial primary productivity: where have all the browsers gone? Proceedings of the National Academy of Sciences, USA, 97, 7899–7904.Google Scholar
  54. Janis, C. M., Theodor, J. M., & Boisvert, B. (2002). Locomotor evolution in camels revisited: a quantitative analysis of pedal anatomy and the acquisition of the pacing gait. Journal of Vertebrate Paleontology, 22, 110–121.Google Scholar
  55. Janis, C. M., Shoshitaishvili, B., Kambic, R., & Figueirido, B. (2012). On their knees: distal femur asymmetry in ungulates and its relationship to body size and locomotion. Journal of Vertebrate Paleontology, 32, 433–445.Google Scholar
  56. Jarman, P. J. (1974). The social organisation of antelope in relation to their ecology. Behaviour, 48, 215–267.Google Scholar
  57. Kappelman, J. (1988). Morphology and locomotor adaptations of the bovid femur in relation to habitat. Journal of Morphology, 198, 119–130.Google Scholar
  58. Kappelman, J. (1991). The paleoenvironment of Kenyapithecus at Fort Ternan. Journal of Human Evolution, 20, 95–129.Google Scholar
  59. Kappelman, J., Plummer, T. W., Bishop, L., Duncan, A., & Appleton, S. (1997). Bovids as indicators of Plio-Pleistocene paleoenvironments in East Africa. Journal of Human Evolution, 32, 229–256.Google Scholar
  60. Klein, R. G., Franciscus, R. G., & Steele, T. E. (2010). Morphometric identification of bovid metapodials to genus and implications for taxon-free habitat reconstruction. Journal of Archaeological Science, 37, 389–401.Google Scholar
  61. Kovarovic, K., & Andrews, P. (2007). Bovid postcranial ecomorphological survey of the Laetoli paleoenvironment. Journal of Human Evolution, 52, 663–680.Google Scholar
  62. Kovarovic, K., Aiello, L. C., Cardini, A., & Lockwood, C. A. (2011). Discriminant function analyses in archaeology: are classification rates too good to be true? Journal of Archaeological Science, 38, 3006–3018.Google Scholar
  63. Kovarovic, K., Su, D. F. & Lintulaakso, K. (2018). Mammal community structure analysis. In D. A. Croft, D. F. Su, & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 349–370). Cham: Springer.Google Scholar
  64. Lewis, M. E. (1997). Carnivoran paleoguilds of Africa: implications for hominid food procurement strategies. Journal of Human Evolution, 32, 257–288.Google Scholar
  65. Louys, J., Montanari, S., Plummer, T. W., Hertel, F., & Bishop, L. C. (2013). Evolutionary divergence and convergence in shape and size within African antelope proximal phalanges. Journal of Mammalian Evolution, 20, 239–248.Google Scholar
  66. Manly, B. F. J. (2004). Multivariate statistical methods: A primer (3rd ed.). New York: Chapman & Hall/CRC.Google Scholar
  67. Martin, L. (1985). Significance of enamel thickness in hominoid evolution. Nature, 314, 260–263.Google Scholar
  68. Meloro, C. (2011a). Feeding habits of Plio-Pleistocene large carnivores as revealed by the mandibular geometry. Journal of Vertebrate Paleontology, 31, 428–446.Google Scholar
  69. Meloro, C. (2011b). Locomotor adaptations in Plio-Pleistocene large carnivores from the Italian Peninsula: palaeoecological implications. Current Zoology, 57, 269–283.Google Scholar
  70. Meloro, C., & O’Higgins, P. (2011). Ecological adaptations of mandibular form in fissiped Carnivora. Journal of Mammalian Evolution, 18, 185–200.Google Scholar
  71. Meloro, C., Elton, S., Louys, J., Bishop, L. C., & Ditchfield, P. (2013). Cats in the forest: predicting habitat adaptations from humerus morphometry in extant and fossil Felidae (Carnivora). Paleobiology, 39, 323–344.Google Scholar
  72. Meloro, C., Clauss, M., & Raia, P. (2015). Ecomorphology of Carnivora challenges convergent evolution. Organisms Diversity & Evolution, 15, 711–720.Google Scholar
  73. Mendoza, M., Janis, C. M., & Palmqvist, P. (2002). Characterizing complex craniodental patterns related to feeding behaviour in ungulates: a multivariate approach. Journal of Zoology, 258, 223–246.Google Scholar
  74. Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., et al. (2012). How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 3, 743–756.Google Scholar
  75. Pérez-Barbería, F. J., & Gordon, I. J. (2001). Relationships between oral morphology and feeding style in the Ungulata: a phylogenetically controlled evaluation. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268, 1023.Google Scholar
  76. Plummer, T. W., & Bishop, L. C. (1994). Hominid paleoecology at Olduvai Gorge, Tanzania as indicated by antelope remains. Journal of Human Evolution, 27, 47–75.Google Scholar
  77. Plummer, T. W., Bishop, L. C., & Hertel, F. (2008). Habitat preference of extant African bovids based on astragalus morphology: operationalizing ecomorphology for palaeoenvironmental reconstruction. Journal of Archaeological Science, 35, 3016–3027.Google Scholar
  78. Plummer, T. W., Ferraro, J. V., Louys, J., Hertel, F., Alemseged, Z., Bobe, R., et al. (2015). Bovid ecomorphology and hominin paleoenvironments of the Shungura Formation, lower Omo River Valley, Ethiopia. Journal of Human Evolution, 88, 108–126.Google Scholar
  79. Polly, P. (2010). Tiptoeing through the trophics: geographic variation in carnivoran locomotor ecomorphology in relation to environment. In A. Goswami & A. Friscia (Eds.), Carnivoran evolution: New views on phylogeny, form, and function (pp. 347–410). Cambridge: Cambridge University Press.Google Scholar
  80. Polly, P. D., Eronen, J. T., Fred, M., Dietl, G. P., Mosbrugger, V., Scheidegger, C., et al. (2011). History matters: ecometrics and integrative climate change biology. Proceedings of the Royal Society of London B: Biological Sciences, 278, 1131–1140.Google Scholar
  81. Radinsky, L. B. (1981). Evolution of skull shape in carnivores: 1. Representative modern carnivores. Biological Journal of the Linnean Society, 15, 369–388.Google Scholar
  82. Raia, P., Carotenuto, F., Meloro, C., Piras, P., & Pushkina, D. (2010). The shape of contention: adaptation, history, and contingency in ungulate mandibles. Evolution, 64, 1489–1503.Google Scholar
  83. Reed, K. E. (1997). Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution, 32, 289–322.Google Scholar
  84. Reed, K. E. (1998). Using large mammal communities to examine ecological and taxonomic structure and predict vegetation in extant and extinct assemblages. Paleobiology, 24, 384–408.Google Scholar
  85. Samuels, J. X. (2009). Cranial morphology and dietary habits of rodents. Zoological Journal of the Linnean Society, 156, 864–888.Google Scholar
  86. Samuels, J. X., & Van Valkenburgh, B. (2008). Skeletal indicators of locomotor adaptations in living and extinct rodents. Journal of Morphology, 269, 1387–1411.Google Scholar
  87. Schaeffer, B. (1947). Notes on the origin and function of the artiodactyl tarsus. American Museum Novitates, 1356, 1–24.Google Scholar
  88. Schaeffer, B. (1948). The origin of a mammalian ordinal character. Evolution, 2, 164–175.Google Scholar
  89. Scott, K. (1985). Allometric trends and locomotor adaptations in the Bovidae. Bulletin of the American Museum of Natural History, 179, 197–288.Google Scholar
  90. Scott, R. S., & Barr, W. A. (2014). Ecomorphology and phylogenetic risk: implications for habitat reconstruction using fossil bovids. Journal of Human Evolution, 73, 47–57.Google Scholar
  91. Scott, R. S., Kappelman, J., & Kelley, J. (1999). The paleoenvironment of Sivapithecus parvada. Journal of Human Evolution, 36, 245–274.Google Scholar
  92. Shockey, B. J., & Anaya, F. (2011). Grazing in a new late Oligocene mylodontid sloth and a mylodontid radiation as a component of the Eocene-Oligocene faunal turnover and the early spread of grasslands/savannas in South America. Journal of Mammalian Evolution, 18, 101–115.Google Scholar
  93. Simpson, G. G. (1951). Horses: The story of the horse family in the modern world and through sixty million years of history. Oxford: Oxford University Press.Google Scholar
  94. Solounias, N., & Moelleken, S. M. C. (1993). Dietary adaptation of some extinct ruminants determined by premaxillary shape. Journal of Mammalogy, 74, 1059–1071.Google Scholar
  95. Spencer, L. M. (1995). Morphological correlates of dietary resource partitioning in the African Bovidae. Journal of Mammalogy, 76, 448–471.Google Scholar
  96. Spencer, L. M. (1997). Dietary adaptations of Plio-Pleistocene Bovidae: implications for hominid habitat use. Journal of Human Evolution, 32, 201–228.Google Scholar
  97. Spradley, J. P., Glander, K. E., & Kay, R. F. (2016). Dust in the wind: how climate variables and volcanic dust affect rates of tooth wear in central american howling monkeys. American Journal of Physical Anthropology, 159, 210–222.Google Scholar
  98. Stebbins, G. L. (1981). Coevolution of grasses and herbivores. Annals of the Missouri Botanical Garden, 68, 75–86.Google Scholar
  99. Strömberg, C. A. E., Dunn, R. E., Crifò, C., & Harris, E. B. (2018). Phytoliths in paleoecology: analytical considerations, current use, and future directions. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 233–285). Cham: Springer.Google Scholar
  100. Tennant, J. P., & MacLeod, N. (2014). Snout shape in extant ruminants. PLoS ONE, 9, e112035.Google Scholar
  101. Van Valen, L. (1960). A functional index of hypsodonty. Evolution, 14, 531–532.Google Scholar
  102. Van Valkenburgh, B. (1987). Skeletal indicators of locomotor behavior in living and extant carnivores. Journal of Vertebrate Paleontology, 7, 162–182.Google Scholar
  103. Van Valkenburgh, B. (1988). Trophic diversity in past and present guilds of large predatory mammals. Paleobiology, 14, 155–173.Google Scholar
  104. Van Valkenburgh, B. (1989). Carnivore dental adaptations and diet: a study of trophic diversity within guilds. In J. L. Gittleman (Ed.), Carnivore behavior, ecology, and evolution (pp. 410–436). Ithaca: Cornell University Press.Google Scholar
  105. Van Valkenburgh, B., & Ruff, C. B. (1987). Canine tooth strength and killing behaviour in large carnivores. Journal of Zoology, 212, 379–397.Google Scholar
  106. Vermillion, W. A., Polly, P. D., Head, J. J., Eronen, J. T., & Lawing, A. M. (2018). Ecometrics: a trait-based approach to paleoclimate and paleoenvironmental reconstruction. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 371–392). Cham: Springer.Google Scholar
  107. Vizcaíno, S. F., Cassini, G. H., Fernicola, J. C., & Bargo, M. S. (2011). Evaluating habitats and feeding habits through ecomorphological features in glyptodonts (Mammalia, Xenarthra). Ameghiniana, 48, 305–319.Google Scholar
  108. Wainwright, P. C., & Reilly, S. M. (1994). Ecological morphology: Integrative organismal biology. Chicago: University of Chicago Press.Google Scholar
  109. Walmsley, A., Elton, S., Louys, J., Bishop, L. C., & Meloro, C. (2012). Humeral epiphyseal shape in the Felidae: the influence of phylogeny, allometry, and locomotion. Journal of Morphology, 273, 1424–1438.Google Scholar
  110. Weinand, D. C. (2007). A study of parametric versus non-parametric methods for predicting paleohabitat from Southeast Asian Bovid astragali. Journal of Archaeological Science, 34, 1774–1783.Google Scholar
  111. Werdelin, L., & Wesley-Hunt, G. D. (2010). The biogeography of carnivore ecomorphology. In A. Goswami & A. Friscia (Eds.), Carnivoran evolution: New views on phylogeny, form and function (pp. 225–245). Cambridge: Cambridge University Press.Google Scholar
  112. Werdelin, L., & Wesley-Hunt, G. D. (2014). Carnivoran ecomorphology: patterns below the family level. Annales Zoologici Fennici, 51, 259–268.Google Scholar
  113. Wesley-Hunt, G. D. (2005). The morphological diversification of carnivores in North America. Paleobiology, 31, 35–55.Google Scholar
  114. White, T. D., Ambrose, S. H., Suwa, G., Su, D. F., DeGusta, D., Bernor, R. L., et al. (2009). Macrovertebrate paleontology and the Pliocene habitat of Ardipithecus ramidus. Science, 326, 67–93.Google Scholar
  115. Williams, S. H., & Kay, R. F. (2001). A comparative test of adaptive explanations for hypsodonty in ungulates and rodents. Journal of Mammalian Evolution, 8, 207–229.Google Scholar
  116. Wing, S., Sues, H., Potts, R., DiMichele, W., & Behrensmeyer, A. (1992). Evolutionary paleoecology. In A. K. Behrensmeyer, J. D. Damuth, W. A. DiMichele, R. Potts, H.-D. Sues & S. L. Wing (Eds.), Terrestrial ecosystems through time: Evolutionary paleoecology of terrestrial plants and animals (pp. 1–14). Chicago: University of Chicago Press.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of AnthropologyCenter for the Advanced Study of Human Paleobiology, The George Washington UniversityWashington, DCUSA

Personalised recommendations