Three-Dimensional Geometric Morphometrics in Paleoecology

  • Sabrina C. Curran
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)


Quantification and analysis of shape is an important component of many paleoecological studies. Geometric morphometrics is a powerful shape analysis tool that allows its user to compare entire regions of morphology, visualize shape differences between groups, and create visualizations based on real data. This method is rapidly becoming the standard for data collection and analysis in many fields such as anthropology, biology, ecology, forensics, paleontology, and zoology. Here, the basic procedures of geometric morphometrics are reviewed and a case study on the ecomorphology of the cervid calcaneus is provided to illustrate how geometric morphometrics can be used in paleoecological studies.


Shape analysis Surface Outline Landmark Ecomorphology Multivariate analysis Artiodactyla Cervidae 



Special thanks to Darin Croft, Scott Simpson, and Denise Su for organizing the excellent “Latest Methods in Cenozoic Paleoecology” symposium and to the Cleveland Museum of Natural History for hosting the event. Funding for this research was provided by National Science Foundation Doctoral Dissertation Improvement Grant BCS-0824607, University of Minnesota Doctoral Dissertation Fellowship, University of Minnesota Herb E. Wright Fellowship in Paleoecology, and University of Minnesota, Department of Anthropology Block Grants. For access to and assistance with collections I thank Alexandru Petculescu (Institute of Speleology, Bucharest, Romania), Aurelian Popescu (Museum of Oltenia, Craiova, Romania), Abel Prieur (Collections de Geologie, Universite C. Bernard Lyon 1, France), Didier Berthet (Collection du Musee des Confluences, Lyon, France), Michi Schulenberg (Chicago Field Museum, USA), Eileen Westwig (American Museum of Natural History, USA), Linda Gordon (National Museum of Natural History, USA), and Chris Conroy (UC Berkeley Museum of Vertebrate Zoology, USA). Thanks to Adam Sylvester for the femoral head visualization in Fig. 14.1 and to the editors and reviewers whose insights greatly improved this manuscript.


  1. Adams, D. C. (2011). Quantitative genetics and evolution of head shape in Plethodon salamanders. Evolutionary Biology, 38, 278–286.Google Scholar
  2. Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Morphology, 71, 5–16.Google Scholar
  3. Adams, D. C., & Otárola-Castillo, E. (2013). Package ‘geomorph’: geometric morphometric analysis of 2d/3d landmark data. R package version 1.0.Google Scholar
  4. Adams, D. C., Rohlf, F. J., & Slice, D. E. (2013). A field comes of age: geometric morphometrics in the 21st century. Hystrix: The Italian Journal of Mammology, 24, 7–14.Google Scholar
  5. Adams, D. C., & Collyer, M. L. (2015). Permutation tests for phylogenetic comparative analyses of high-dimensional shape data: what you shuffle matters. Evolution, 69, 823–829.Google Scholar
  6. Aguilar-Medrano, R. (2017). Ecomorphology and evolution of the pharyngeal apparatus of benethic damselfish (Pomacentridae, subfamily Stegastinae). Marine Biology, 164, 21.Google Scholar
  7. Arias-Martorell, J., Tallman, M., Potau, J. M., Bello-Hellegouarch, G., & Pérez- Pérez, A. (2015). Shape analysis of the proximal humerus in orthograde and semi-orthograde primates: correlates of suspensory behavior. American Journal of Primatology, 77, 1–19.Google Scholar
  8. Arnold, C., Matthews, L. J., & Nunn, C. L. (2012). The 10k trees website: a new online resource for primate phylogeny. Evolutionary Anthropology, 19, 114–118.Google Scholar
  9. Baab, K. L., McNulty, K. P., & Rohlf, F. J. (2012). The shape of human evolution: a geometric morphometrics perspective. Evolutionary Anthropology, 21, 151–165.Google Scholar
  10. Barr, W. A. (2014). Functional morphology of the bovid astragalus in relation to habitat: controlling phylogenetic signal in ecomorphology. Journal of Morphology, 275, 1201–1216.Google Scholar
  11. Barr, W. A. (2015). Paleoenvironments of the Shungura Formation (Plio-Pleistocene: Ethiopia) based on ecomorphology of the bovid astragalus. Journal of Human Evolution, 88, 97–107.Google Scholar
  12. Barr, W. A. (2018). Ecomorphology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 337–347). Cham: Springer.Google Scholar
  13. Bauer, C. C., & Harvati, K. (2015). A virtual reconstruction and comparative analysis of the KNM-ER 42700 cranium. Anthropologischer Anzeiger, 72, 129–140.Google Scholar
  14. Blain, H.-A., Agustí, J., Lordkipanidze, D., Rook, L., & Delfino, M. (2014). Paleoclimatic and paleoenvironmental context of the Early Pleistocene hominins from Dmanisi (Georgia, Lesser Caucasus) inferred from the herpetofaunal assemblage. Quaternary Science Reviews, 105, 136–150.Google Scholar
  15. Bo, W., Wang, Z., Xu, F., Fu, G., Sui, Y., Wu, W., et al. (2014). Shape mapping: Genetic mapping meets geometric morphometrics. Briefings in Bioinformatics, 15, 571–581.Google Scholar
  16. Bookstein, F. L. (1978). The measurement of biological shape and shape change (Lecture Notes in Biomathematics, Vol. 24). New York: Springer-Verlag.Google Scholar
  17. Bookstein, F. L. (1989). Principal warps: thin-plate splines and the decomposition of deformations. Institute of Electrical and Electronics Engineers, Transactions on Pattern Analysis and Machine Intelligence, 11, 567–585.Google Scholar
  18. Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge: Cambridge University Press.Google Scholar
  19. Bookstein, F. L. (1996a). Biometrics, biomathematics and the morphometric synthesis. Bulletin of Mathematical Biology, 58, 313–365.Google Scholar
  20. Bookstein, F. L. (1996/1997). Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Medical Imaging Analysis, 1, 225–243.Google Scholar
  21. Bookstein, F. L. (2015). The relation between geometric morphometrics and functional morphology, as explored by Procrustes interpretation of individual shape measures pertinent to function. The Anatomical Record, 298, 314–327.Google Scholar
  22. Bookstein, F. L. (2016). The inappropriate symmetries of multivariate statistical analysis in geometric morphometrics. Evolutionary Biology, 43, 277–313.Google Scholar
  23. Bookstein, F. L. (2017a). A newly noticed formula enforces fundamental limits on geometric morphometric analyses. Evolutionary Biology, 44, 522–541.Google Scholar
  24. Bookstein, F. L. (2017b). A method of factor analysis for shape coordinates. American Journal of Physical Anthropology, 164, 221–245.Google Scholar
  25. Bookstein, F. L., Chernoff, B., Elder, R., Humphries, J., Smith, G., & Strauss, R. (1985). Morphometrics in evolutionary biology. (Special Publication No. 15). Philadelphia: Academy of Natural Sciences.Google Scholar
  26. Bottom-Divet, L., Cornette, R., Houssaye, A., Fabre, A.-C., & Herrel, A. (2017). Swimming and running: a study of the convergence in long bone morphology among semiaquatic mustelids (Carnivora: Mustelidae). Biological Journal of the Linnean Society, 121, 38–49.Google Scholar
  27. Boyer, C. B. (1991). A history of mathematics (2nd ed.). Hoboken: Wiley.Google Scholar
  28. Boyer, D., Lipman, Y., Clair, E. St., Puente, J., Funkhouser, T., Patel, B., et al. (2011). Algorithms to automatically quantify the geometric similarity of anatomical surfaces. Proceedings of the National Academy of Sciences, USA, 108, 18221–18226.Google Scholar
  29. Boyer, D. M., Puente, J., Gladman, J. T., Glynn, C., Mukherjee, S., Yapuncich, G. S., et al. (2015). A new fully automated approach for aligning and comparing shapes. The Anatomical Record, 298, 249–276.Google Scholar
  30. Breda, M. (2008). Palaeoecology and palaeoethology of the Plio-Pleistocene genus Cervalces (Cervidae, Mammalia) in Eurasia. Journal of Vertebrate Paleontology, 28, 886–899.Google Scholar
  31. Cáceres, N., Meloro, C., Carotenuto, F., Passaro, F., Sponchiado, J., Melo, G. L., et al. (2014). Ecogeographical variation in skull shape of capuchin monkeys. Journal of Biogeography, 41, 501–512.Google Scholar
  32. Cano, A. R. G., Fernández, M. H., & Álvarez-Sierra, M. Á. (2013). Dietary ecology of Murinae (Muridae, Rodentia): a geometric morphometric approach. PLoS ONE, 11, e79080.Google Scholar
  33. Cardini, A., & Elton, S. (2007). Sample size and sampling error in geometric morphometric studies of size and shape. Zoomorphology, 126, 121–134.Google Scholar
  34. Cardini, A., & Loy, A. (Eds.). (2013). Virtual morphology and evolutionary morphometrics in the new millennium. Hystrix: The Italian Journal of Mammology, 24(1).Google Scholar
  35. Cardini, A., Seetah, K., & Barker, G. (2015). How many specimens do I need? Sampling error in geometric morphometrics: testing the sensitivity of means and variances in simple randomized selection experiments. Zoomorphology, 134, 149–163.Google Scholar
  36. Christensen, P. (2008). Evolution of skull and mandible shape in cats (Carnivora: Felidae). PLoS ONE, 3, e2807.Google Scholar
  37. Colangelo, P., Castiglia, R., Franchini, P., & Solano, E. (2010). Patterns of shape variation in the eastern African gerbils of the genus Gerbilliscus, USA (Rodentia, Muridae): environmental correlations and implications for taxonomy and systematics. Mammalian Biology, 75, 302–310.Google Scholar
  38. Cooke, S. B. (2011). Paleodiet of extinct platyrrhines with emphasis on the Caribbean forms: three-dimensional geometric morphometrics of mandibular second molars. The Anatomical Record, 294, 2073–2091.Google Scholar
  39. Cooke, S. B., & Terhune, C. E. (2015). Form, function, and geometric morphometrics. The Anatomical Record, 298, 5–28.Google Scholar
  40. Copes, L. E., Lucas, L. M., Thostenson, J. O., Hoekstra, H. E., & Boyer, D. M. (2016). A collection of non-human primate computed tomography scans housed in MorphoSource, a repository for 3D data. Scientific Data, 3, 160001.Google Scholar
  41. Curran, S. (2009). Hominin paleoecology and cervid ecomorphology. Ph.D. Dissertation, University of Minnesota.Google Scholar
  42. Curran, S. (2012). Expanding ecomorphological methods: geometric morphometric analysis of Cervidae post-crania. Journal of Archaeological Science, 39, 1172–1182.Google Scholar
  43. Curran, S. (2015). Examining Eucladoceros ecomorphology using geometric morphometrics. The Anatomical Record, 298, 291–313.Google Scholar
  44. Curran, S., Terhune, C., Sylvester, A., Gogol, S., & Hubbard, J. (2016). New ecomorphological proxies for paleohabitat reconstructions: Geometric morphometric analyses of cervid joint surface morphology. PaleoAnthropology Society meetings, 12 April (2016).Google Scholar
  45. Davies, T. G., Rahman, I. A., Lautenschlager, S., Cunningham, J. A., Asher, R. J., Barrett, P. M., et al. (2017). Open data and digital morphology. Proceedings of the Royal Society B: Biological Sciences, 284, 20170194.CrossRefGoogle Scholar
  46. DeGusta, D., & Vrba, E. (2003). A method for inferring paleohabitats from the functional morphology of bovid astragali. Journal of Archaeological Science, 30, 1009–1022.Google Scholar
  47. DeGusta, D., & Vrba, E. (2005). Methods for inferring paleohabitats from the functional morphology of bovid phalanges. Journal of Archaeological Science, 32, 1099–1113.Google Scholar
  48. Delson, E., Faure, M., Guérin, C., Aprile, A., Argant, J., Blackwell, B., et al. (2006). Franco-American renewed research at the Late Villafranchian locality of Senèze (Haute-Loire, France). Courier Forschunginstitut Senckenberg, 256, 275–290.Google Scholar
  49. Dunn, R. H. (2018). Functional morphology of the postcranial skeleton. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 23–36). Cham: Springer.Google Scholar
  50. Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis. New York: Wiley.Google Scholar
  51. Eronen, J. T., Evans, A. R., Jernvall, J., & Fortelius, M. (2010). The impacts of regional climate on the evolution of mammals: a case study using fossil horses. Evolution, 64, 398–408.Google Scholar
  52. Evans, A. R., & Fortelius, M. (2008). Three-dimensional reconstruction of tooth relationships during carnivoran chewing. Palaeontologia Electronica, 11(2), 10A.Google Scholar
  53. Evans, A. R., & Pineda-Munoz, S. (2018). Inferring mammal dietary ecology from dental morphology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 37–51). Cham: Springer.Google Scholar
  54. Evans, A. R., Wilson, G. P., Fortelius, M., & Jernvall, J. (2007). High-level similarity of dentitions in carnivorans and rodents. Nature, 445, 78–81.Google Scholar
  55. Evin, A., Souter, T., Hulme-Beaman, Ameen, C., Allen, R., Viacava, P., et al. (2016). Use of close-range photogrammetry in zooarchaeology: creating accurate 3D models of wolf crania to study dog domestication. Journal of Archaeological Science: Reports, 9, 87–93.Google Scholar
  56. Fabre, A.-C., Cornette, R., Goswami, A., & Peigné, S. (2015). Do constraints associated with locomotor habitat drive the evolution of forelimb shape? Journal of Anatomy, 226, 596–610.Google Scholar
  57. Falsetti, A. B., Jungers, W. L., & Cole III, T. M. (1993). Morphometrics of the callitrichid forelimb. International Journal of Primatology, 14, 551–572.Google Scholar
  58. Fernández, P. J., Holowka, N. B., Demes, B., & Jungers, W. L. (2016). Form and function of the human and chimpanzee forefoot: implications for early hominin bipedalism. Scientific Reports, 6, 30532.Google Scholar
  59. Ferring, R., Oms, O., Agusti, J., Berna, F., Niotadze, M., Sheila, T., et al. (2011). Earliest human occupation at Dmanisi (Georgian Caucasus) dated to 1.85–1.78 Ma. Proceedings of the National Academy of Sciences, USA, 108, 10432–10436.Google Scholar
  60. Figueirido, B., Palmqvist, P., & Pérez-Claros, J. A. (2005). Ecomorphological correlates of craniodental variation in bears and paleobiological implications for extinct taxa: an approach based on geometric morphometrics. Journal of Zoology, 277, 70–80.Google Scholar
  61. Figueirido, B., & Soibelzon, L. H. (2010). Inferring palaeoecology in extinct tremarctine bears (Carnivora, Ursidae) using geometric morphometrics. Lethaia, 43, 209–222.Google Scholar
  62. Forrest, F. L., Plummer, T. W., & Raaum, R. L. (2018). Ecomorphological analysis of bovid mandibles from Laetoli Tanzania using 3D geometric morphometrics: implications for hominin paleoenvironmental reconstruction. Journal of Human Evolution, 114, 20–34.Google Scholar
  63. Frost, S. R., Marcus, L. F., Bookstein, F. L., Reddy, D. P., & Delson, E. (2003). Cranial allometry, phylogeography, and systematics of large-bodied papionins (Primates: Cercopithecinae) inferred from geometric morphometric analysis of landmark data. The Anatomical Record, 275A, 1048–1072.Google Scholar
  64. Furió, M., Agustí, J., Mouskhelishvili, A., Sanisidro, Ó., & Santos-Cubedo, A. (2010). The paleobiology of the extinct venomous shrew Beremendia (Sorcidae, Insectivora, Mammalia) in relation to the geology and paleoenvironment of Dmanisi (Early Pleistocene, Georgia). Journal of Vertebrate Paleontology, 30, 928–942.Google Scholar
  65. Gabunia, L., Vekua, A., & Lordkipanidze, D. (2000). The environmental contexts of early occupation of Georgia (Transcaucasia). Journal of Human Evolution, 38, 785–802.Google Scholar
  66. Gilbert, C., Ropiquet, A., & Hassanin, A. (2006). Mitochondrial and nuclear phylogenies of Cervidae (Mammalia, Ruminantia): systematics, morphology, and biogeography. Molecular Phylogenetics and Evolution, 40, 101–117.Google Scholar
  67. Geiger, M. F., Schreiner, C., Delmastro, G. B., & Herder, F. (2016). Combining geometric morphometrics with molecular genetics to investigate a putative hybrid complex: a case study with barbels Barbus spp. (Teleostei: Cyprinidae). Journal of Fish Biology, 88, 1038–1055.Google Scholar
  68. Gonzalez, P. N., Barbeito-Andres, J., D’Addona, L. A., Bernail, V., & Perez, S. I. (2016). Technical note: Performance of semi and fully automated approaches for registration of 3D surface coordinates in geometric morphometric studies. American Journal of Physical Anthropology, 160, 169–178.Google Scholar
  69. Green, J. L., & Croft, D. A. (2018). Using dental mesowear and microwear for dietary inference: a review of current techniques and applications. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 53–73). Cham: Springer.Google Scholar
  70. Gunz, P., Mitteroecker, P., & Bookstein, F. L. (2005). Semilandmarks in three dimensions. In D. E. Slice (Ed.), Modern morphometrics in physical anthropology (pp. 73–98). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  71. Gunz, P., & Mitteroecker, P. (2013). Semilandmarks: a method for quantifying curves and surfaces. Hystrix: The Italian Journal of Mammology, 24, 103–109.Google Scholar
  72. Gunz, P., Mitteroecker, P., Neubauer, S., Weber, G. W., & Bookstein, F. L. (2009). Principles for the virtual reconstruction of hominin crania. Journal of Human Evolution, 57, 48–62.Google Scholar
  73. Gunz, P., Ramsier, M., Kuhrig, M., Hublin, J.-J., & Spoor, F. (2012). The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. Journal of Anatomy, 220, 529–543.Google Scholar
  74. Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1:4), 9 pp.Google Scholar
  75. Harcourt-Smith, W. E., Tallman, M., Frost, S. R., Wiley, D. F., Rohlf, F. J., & Delson, E. (2008). Analysis of selected hominoid joint surfaces using laser scanning and geometric morphometrics: a preliminary report. In E. J. Sargis & M. Dagosto (Eds.), Mammalian evolutionary morphology: A tribute to Frederick S. Szalay (pp. 373–383). Berlin: Springer Science + Business Media.Google Scholar
  76. Hemmer, H., Kahlke, R.-D., & Vekua, A. (2011). A cheetah Acinonyx pardinesis (Croizet et Jobert, 1828) s.l. at the hominin site of Dmanisi (Georgia) – A potential prime meat supplier in Early Pleistocene ecosystems. Quaternary Science Reviews, 30, 2703–2714.Google Scholar
  77. Hildebrand, M. (1985). Walking and running. In M. Hildebrand, D. M. Bramble, K. F. Liem, & D. B. Wake (Eds.), Functional vertebrate morphology (pp. 38–57). Cambridge, MA, USA: Belknap Press.Google Scholar
  78. Jungers, W. L., Falsetti, A. B., & Wall, C. E. (1995). Shape, relative size, and size-adjustments in morphometrics. Yearbook of Physical Anthropology, 38, 137–161.Google Scholar
  79. Kappelman, J. (1988). Morphology and locomotor adaptations of the bovid femur in relation to habitat. Journal of Morphology, 198, 119–130.Google Scholar
  80. Kappelman, J. (1991). The paleoenvironment of Kenyapithecus at Fort Ternan. Journal of Human Evolution, 20, 95–129.Google Scholar
  81. Kaliontzopoulou, A. (2011). Geometric morphometrics in herpetology: modern tools for enhancing the study of morphological variation in amphibians and reptiles. Basic and Applied Herpetology, 25, 5–32.Google Scholar
  82. Kendall, D. G. (1977). The diffusion of shape. Advances in Applied Probability, 9, 428–430.Google Scholar
  83. Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11, 353–357.Google Scholar
  84. Klingenberg, C. P. (2013). Visualizations in geometric morphometrics: how to read and how to make graphs showing shape changes. Hystrix, the Italian Journal of Mammalogy, 24, 15–24.Google Scholar
  85. Klingenberg, C. P. (2016). Size, shape, and form: concepts of allometry in geometric morphometrics. Development, Genes, and Evolution, 226, 113–137.Google Scholar
  86. Kovarovic, K., & Andrews, P. (2007). Bovid post-cranial ecomorphological survey of the Laetoli paleoenvironment. Journal of Human Evolution, 52, 663–680.Google Scholar
  87. Kovarovic, K., Aiella, L. C., Cardini, A., & Lockwood, C. A. (2011). Discriminant function analyses in archaeology: are classification rates too good to be true? Journal of Archaeological Science, 38, 3006–3018.Google Scholar
  88. Lordkipanidze, D., Jashashvili, T., Vekua, A., De León, M. S. P., Zollikofer, C. P., Rightmire, G. P., et al. (2007). Postcranial evidence from early Homo from Dmanisi, Georgia. Nature, 449, 305–310.Google Scholar
  89. MacLeod, N. (1999). Generalizing and extending the eigenshape method of shape space visualization and analysis. Paleobiology, 25, 107–138.Google Scholar
  90. Mander, L., & Punyasena, S. W. (2018). Fossil pollen and spores in paleoecology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 213–232). Cham: Springer.Google Scholar
  91. Marcus, L. F., Bello, E., & García-Valdecasas, A. (Eds.). (1993). Contribution to morphometrics. Madrid: Monografias del Museo Nacional de Ciencias Naturales.Google Scholar
  92. Marcus, L. F., Corti, M., Loy, A., Naylor, G. J. P., & Slice, D. E. (Eds.). (1996). Advances in morphometrics. (NATO ASI Series A: Life Sciences, Vol. 284). New York: Plenum.Google Scholar
  93. Martinez-Abadias, N., Mateu, R., Niksic, M., Russo, L., & Sharpe, J. (2016). Geometric morphometrics on gene expression patterns within phenotypes: a case study on limb development. Systematic Biology, 65, 194–211.Google Scholar
  94. McGuire, J. L. (2010). Geometric morphometrics of vole (Microtus californicus) dentition as a new paleoclimate proxy: shape change along geographic and climatic clines. Quaternary International, 212, 198–205.Google Scholar
  95. McNulty, K. P. (2003). Geometric morphometric analyses of extant and fossil hominoid craniofacial morphology. Ph.D. Dissertation, City University of New York.Google Scholar
  96. McNulty, K. P., Frost, S. R., & Strait, D. S. (2006). Examining affinities of the Taung child by developmental simulation. Journal of Human Evolution, 51, 274–296.Google Scholar
  97. McNulty, K. P., & Vinyard, C. J. (2015). Morphometry, geometry, function and the future. The Anatomical Record, 298, 328–333.Google Scholar
  98. Meloro, C., Cáceres, N., Carotenuto, F., Passaro, F., Sponchiado, J., Melo, G. L., et al. (2014). Ecogeographical variation in skull morphometry of howler monkeys (Primates: Atelidae). Zoologischer Anzeiger, 253, 345–359.Google Scholar
  99. Messager, E., Lordkipanidze, D., Kvavadze, E., Ferring, C. R., & Voinchet, P. (2010a). Palaeoenvironmental reconstruction of Dmanisi site (Georgia) based on palaeobotanical data. Quaternary International, 223–224, 20–27.Google Scholar
  100. Messager, E., Lordkipanidze, D., Delhon, C., & Ferring, C. R. (2010b). Palaeoecological implications of the Lower Pleistocene phytolith record from the Dmanisi Site (Georgia). Palaeogeography, Palaeoclimatology, Palaeoecology, 288, 1–13.Google Scholar
  101. Millella, M., Zollikofer, C. P. E., & Ponce de León, M. S. (2015). Virtual reconstruction and geometric morphometrics as tools for paleopathology: a new approach to study rare developmental disorders of the skeleton. The Anatomical Record, 298, 335–345.Google Scholar
  102. Mitteroecker, P., & Bookstein, F. (2011). Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evolutionary Biology, 38, 100–114.Google Scholar
  103. Mitteroecker, P., & Gunz, P. (2009). Advances in geometric morphometrics. Evolutionary Biology, 36, 235–247.Google Scholar
  104. Moncel, M.-H. (2010). Oldest human expansions in Eurasia: favoring and limiting factors. Quaternary International, 223–224, 1–9.Google Scholar
  105. Monteiro, L. R. (1999). Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape. Systematic Biology, 48, 192–199.Google Scholar
  106. Monteiro, L. R., Duarte, L. C., & dos Reis, S. F. (2003). Environmental correlates of geographical variation in skull and mandible shape of the punar´e rat Thrichomys apereoides (Rodentia: Echimyidae). Journal of Zoology, London, 261, 47–57.Google Scholar
  107. Morgan, C. C., & Álvarez, A. (2012). The humerus of South American caviomorph rodents: shape, function and size in a phylogenetic context. Journal of Zoology, 290, 107–116.Google Scholar
  108. Muñoz, N. A., Cassini, G. H., Candela, A. M., & Vizcaíno, S. F. (2017). Ulnar articular surface 3D landmarks and ecomorphology of small mammals: a case study of two early Miocene typotheres (Notoungulata) from Patagonia. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 106, 315–323.Google Scholar
  109. Neff, N. A., & Marcus, L. F. (1980). A survey of multivariate methods for systematics. New York: American Museum of Natural History.Google Scholar
  110. Nowak, R. (1999). Walker’s mammals of the world, (Vol. II, pp. 1091–1133). Baltimore: John Hopkins University Press.Google Scholar
  111. Nomade, S., Pastre, J. F., Guillou, H., Faure, M., Guérin, C., Delson, E., et al. (2014). 40Ar/39Ar constraints on some French landmark Late Pliocene to Early Pleistocene large mammalian paleofaunas: paleoenvironmental and paleoecological implications. Quaternary Geochronology, 21, 2–15.Google Scholar
  112. O’Higgins, P., & Jones, N. (2006). Tools for statistical shape analysis. Hull York Medical School.
  113. O’Higgins, P., & Milne, N. (2013). Applying geometric morphometrics to compare changes in size and shape arising from finite element analyses. Hystrix, the Italian Journal of Morphology, 24, 126–132.Google Scholar
  114. Palmqvist, P. (2002). On the community structure of the large mammals assemblage from Dmanisi (East Georgia, Caucasus). In M. D. Renzi, M. V. P. Alonso, M. Belinchón, E. Penalver, P. Montoya & A. Márquez-Aliaga (Eds.), Current topics in taphonomy and fossilization (pp. 361–383). Valencia: Ayuntamentio de Valencia.Google Scholar
  115. Panagiotopoulou, O. (2009). Finite element analysis (FEA): applying an engineering method to functional morphology in anthropology and human biology. Annals of Human Biology, 36, 609–623.Google Scholar
  116. Parr, W. C. H., Wroe, S., Chamoli, U., Richards, H. S., McCurry, M. R., Clausen, P. D., et al. (2012). Toward integration of geometric morphometrics and computational biomechanics: new methods for 3D virtual reconstruction and quantitative analysis of Finite Element Models. Journal of Theoretical Biology, 301, 1–14.Google Scholar
  117. Peppe, D. J., Baumgartner, A., Flynn, A., & Blonder, B. (2018). Reconstructing paleoclimate and paleoecology using fossil leaves. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 287–315). Cham: Springer.Google Scholar
  118. Perez, S. I., Bernal, V., & Gonzalez, P. N. (2006). Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation. Journal of Anatomy, 208, 769–784.Google Scholar
  119. Piras, P., Marcolini, F., Claude, J., Venture, J., Kotsakis, T., & Cubo, J. (2012). Ecological and functional correlates of molar shape variation in European populations of Arvicola (Arvicolinae, Rodentia). Zoologischer Anzeiger, 251, 335–343.Google Scholar
  120. Plummer, T. W., & Bishop, L. C. (1994). Hominid paleoecology at Olduvai Gorge, Tanzania as indicated by antelope remains. Journal of Human Evolution, 27, 47–75.Google Scholar
  121. Plummer, T. W., Bishop, L. C., & Hertel, F. (2008). Habitat preference of extant African bovids based on astragalus morphology: operationalizing ecomorphology for palaeoenvironmental reconstruction. Journal of Archaeological Science, 35, 3016–3027.Google Scholar
  122. Plummer, T. W., Ferraro, J. V., Louys, J., Hertel, F., Alemseged, Z., Bobe, R., et al. (2015). Bovid ecomorphology and hominin paleoenvironments of the Shungura Formation, lower Omo River Valley, Ethiopia. Journal of Human Evolution, 88, 108–126.Google Scholar
  123. Raia, P. (2004). Morphological correlates of tough food consumption in large land carnivores. Italian Journal of Zoology, 71, 45–50.Google Scholar
  124. Renaud, S., Dufour, A.-B., Hardouin, E. A., Ledevine, R., & Auffray, J.-C. (2015). Once upon multivariate analyses: when they tell several stories about biological evolution. PLoS ONE, 10, e0132801.Google Scholar
  125. Ritzman, T. B., Terhune, C. E., Gunz, P., & Robinson, C. A. (2016). Mandibular ramus shape of Australopithecus sediba suggests a single variable species. Journal of Human Evolution, 10, 54–64.Google Scholar
  126. Robinson, C., & Terhune, C. E. (2017). Error in geometric morphometric data collection: combining data from multiple sources. American Journal of Physical Anthropology, 164, 62–75.Google Scholar
  127. Rohlf, F. J. (2015). The tps series of software. Hystrix, the Italian Journal of Mammalogy, 26, 9–12.Google Scholar
  128. Rohlf, F. J., & Bookstein, F. L. (Eds.). (1990). Proceedings of the Michigan Morphometrics Workshop. University of Michigan Museum of Zoology Special Publication 2.Google Scholar
  129. Rohlf, F. J., & Marcus, L. F. (1993). A revolution in morphometrics. Trends in Ecology & Evolution, 8, 129–132.Google Scholar
  130. Rohlf, F. J., & Corti, M. (2000). Use of two-block partial least-squares to study covariation in shape. Systematic Biology, 49, 740–753.Google Scholar
  131. Schlager, S. (2017). Morpho and Rvcg – Shape analysis in R. In G. Zheng, S. Li & G. Szekely (Eds.), Statistical shape and deformation analysis (pp. 217–256). Cambridge: Academic Press.Google Scholar
  132. Scott, R., Kappelman, J., & Kelley, J. (1999). The paleoenvironment of Sivapithecus parvada. Journal of Human Evolution, 36, 245–274.Google Scholar
  133. Shearer, B. M., Tallman, M., Cooke, S. B., Halenar, L. B., Reber, S. L., Plummer, J., et al. (2017). Evaluating causes of error in landmark-based data collection using scanners. PLoS ONE, 12, e0187452.Google Scholar
  134. Sheets, H. D., Covino, K. M., Panasiewicz, J. M., & Morris, S. R. (2006). Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape. Frontiers in Zoology, 3, 15.Google Scholar
  135. Sherwood, R. J., & McNulty, K. P. (2011). Dissecting the genetic architecture of craniofacial shape. In P. E. Lestrel (Ed.), Biological shape analysis: Proceedings of the 1st international symposium (pp. 145–171). Singapore: World Scientific.Google Scholar
  136. Slater, G. J., Figuerirido, B., Louis, L., Yang, P., & Van Valkenburgh, B. (2010). Biomechanical consequences of rapid evolution in the polar bear linage. PLoS ONE, 5, e13870.Google Scholar
  137. Slice, D. E. (2002). Morpheus et al. Department of Ecology and Evolution. State University of New York, Stony Brook.Google Scholar
  138. Slice, D. E. (2005). Modern morphometrics. In D. E. Slice (Ed.), Modern morphometrics in physical anthropology (pp. 1–45). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  139. Slice, D. E. (2007). Geometric morphometrics. Annual Review of Anthropology, 36, 261–281.Google Scholar
  140. Smith, A. L., Benazzi, S., Ledogar, J. A., Tamvada, K., Smith, L. C. P., Weber, G. W., et al. (2015). Biomechanical implications of intraspecific shape variation in chimpanzee crania: moving toward an integration of geometric morphometrics and finite element analysis. The Anatomical Record, 298, 122–144.Google Scholar
  141. Smits, P. D., & Evans, A. R. (2012). Functional constraints on tooth morphology in carnivorous mammals. BMC Evolutionary Biology, 12, 146.Google Scholar
  142. Sommer III, H. J., Eckhardt, R. B., & Shiang, T. Y. (2006). Superquadratic modeling of cranial and cerebral shape and asymmetry. American Journal of Physical Anthropology, 129, 189–195.Google Scholar
  143. Strömberg, C. A. E., Dunn, R. E., Crifò, C., & Harris, E. B. (2018). Phytoliths in paleoecology: analytical considerations, current use, and future directions. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 233–285). Cham: Springer.Google Scholar
  144. Tallman, M., Amenta, A., Delson, E., Frost, S. R., Ghosh, D., Klukkert, Z. S., et al. (2014). Evaluation of a new method of fossil retrodeformation by algorithmic symmetrization: crania of papionins (Primates: Cercopithecidae) as a test case. PLoS ONE, 9, e100833.Google Scholar
  145. Tappen, M. J., Lordkipanidze, D., Bukshianidze, M., Vekua, A., & Ferring, R. (2007). Are you in or out (of Africa)? In T. R. Pickering, K. Schick, & N. Toth (Eds.), Breathing life into fossils: Taphonomic studies in honor of C. K. Brain (pp. 119–135). Bloomington: Stone Age Institute Press.Google Scholar
  146. Taylor, A. C., Lautenschlager, S., Qi, Z., & Rayfield, E. J. (2016). Biomechanical evaluation of different musculoskeletal arrangements in Psittacosaurus and implications for cranial function. The Anatomical Record, 300, 49–61.Google Scholar
  147. Thompson, D. W. (1917). On growth and form. London: Cambridge University Press.Google Scholar
  148. Tocheri, M. W., Solhan, C. R., Orr, C. M., Femiani, J., Frohlich, B., Groves, C. P., et al. (2011). Ecological divergence and medial cuneiform morphology in gorillas. Journal of Human Evolution, 60, 171–184.Google Scholar
  149. Tocheri, M. W., Orr, C. M., Jacofsky, M. C., & Marzke, M. W. (2008). The evolutionary history of the hominin hand since the last common ancestor of Pan and Homo. Journal of Anatomy, 212, 544–562.Google Scholar
  150. Valli, A. M. F. (2004a). Cervidae from the late Pleistocene deposit (Mid-Villafranchian) of Saint-Vallier, (Drôme, France). Geobios, 37, S191–S232.Google Scholar
  151. Valli, A. M. F. (2004b). Taphonomy of Saint-Vallier (Drôme, France), the reference locality for biozone MN17 (Upper Pliocene). Lethaia, 37, 337–350.Google Scholar
  152. van Heteren, A. H., MacLarnon, A., Soligo, C., & Rae, T. C. (2016). Functional morphology of the cave bear (Ursus spelaeus) mandible: a 3D geometric morphometric analysis. Organisms, Diversity & Analysis, 16, 299–314.Google Scholar
  153. von Cramon-Taubadel, N., Frazier, B. C., & Lahr, M. M. (2007). The problem of assessing landmark error in geometric morphometrics: theory, methods, and modifications. American Journal of Physical Anthropology, 134, 24–35.Google Scholar
  154. Walmsley, A., Elton, S., Louys, J., Bishop, L. C., & Meloro, C. (2012). Humeral epiphyseal shape in the Felidae: the influence of phylogeny, allometry, and locomotion. The Journal of Morphology, 273, 1424–1438.Google Scholar
  155. Weinand, D. C. (2007). A study of parametric versus non-parametric methods for predicting paleohabitat from Southeast Asia bovid astragali. Journal of Archaeological Science, 34, 1774–1783.Google Scholar
  156. White, J. (2009). Geometric morphometric investigation of molar shape diversity in modern lemurs and lorises. The Anatomical Record, 292, 701–719.Google Scholar
  157. Wiley, D. F., Amenta, N., Alcantara, D. A., Ghosh, D., Kil, Y. J., Delson, E., Harcourt-Smith, W., Rohlf, F. J., St. John, K., & Hamann, B. (2005). Evolutionary morphing. IEEE Visualization, Proceedings, 431–438.Google Scholar
  158. Zelditch, M. L., Swiderski, D. L., Sheets, H. D., & Fink, W. L. (2004). Geometric morphometrics for biologists: A primer. London: Elsevier Academic Press.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Sociology and AnthropologyOhio UniversityAthensUSA

Personalised recommendations