Reconstructing Paleoclimate and Paleoecology Using Fossil Leaves

  • Daniel J. PeppeEmail author
  • Aly Baumgartner
  • Andrew Flynn
  • Benjamin Blonder
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)


Plants are strongly influenced by their surrounding environment, which makes them reliable indicators of climate and ecology. The relationship between climate, ecology, plant traits and the geographic distribution of plants based on their climatic tolerances have been used to develop plant-based proxies for reconstructing paleoclimate and paleoecology. These proxies are some of the most accurate and precise methods for reconstructing the climate and ecology of ancient terrestrial ecosystems and have been applied from the Cretaceous to the Quaternary. Despite their utility, the relationships between plant traits and climate that underlie these methods are confounded by other factors such as leaf life-span and phylogenetic history. Work focused on better understanding these confounding factors, incorporating the influence of phylogeny and leaf economic spectrum traits into proxies, expanding modern leaf trait-climate and ecology calibration datasets to additional biogeographic areas and climate regimes, and developing automated computer algorithms for measuring leaf traits are important growing research areas that will help considerably improve plant-based paleoclimate and paleoecological proxies.


Paleobotany Leaf physiognomy Leaf margin analysis Leaf area analysis CLAMP Digital leaf physiognomy Nearest living relative Leaf economic spectrum Leaf vein density Leaf mass per area 



We would like to thank Denise Su, Scott Simpson, and Darin Croft for inviting us to contribute to the Latest Methods in Reconstructing Cenozoic Terrestrial Environments and Ecological Communities workshop and to this special volume. We thank Dana Royer for many helpful discussions about these topics and review of this manuscript and David Greenwood for his helpful and constructive review. This work was supported by the National Science Foundation (grant EAR-1325552).


  1. Ackerly, D. D., & Reich, P. B. (1999). Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. American Journal of Botany, 86, 1272–1281.Google Scholar
  2. Adams, J. M., Green, W. A., & Zhang, Y. (2008). Leaf margins and temperature in the North American flora: recalibrating the paleoclimatic thermometer. Global and Planetary Change, 60, 523–534.Google Scholar
  3. Adams, J. S., Kraus, M. J., & Wing, S. L. (2011). Evaluating the use of weathering indices for determining mean annual precipitation in the ancient stratigraphic record. Palaeogeography, Palaeoclimatology, Palaeoecology, 309, 358–366.Google Scholar
  4. Aizen, M. A., & Ezcurra, C. (2008). Do leaf margins of the temperate forest flora of southern South America reflect a warmer past? Global Ecology and Biogeography, 17, 164–174.Google Scholar
  5. Ash, A., Ellis, B., Hickey, L. J., Johnson, K. R., Wilf, P., & Wing, S. (1999). Manual of leaf architecture – morphological description and categorization of dicotyledonous and net-veined monocotyledonous angiosperms (65 p.). Washington D. C.: The Leaf Architecture Working Group, Smithsonian Institution.Google Scholar
  6. Axelrod, D. I. (1948). Climate and evolution in western North America during middle Pliocene time. Evolution, 127–144.Google Scholar
  7. Axelrod, D. I. (1952). A theory of angiosperm evolution. Evolution, 29–60.Google Scholar
  8. Axelrod, D. I., & Bailey, H. P. (1969). Paleotemperature analysis of tertiary floras. Palaeogeography, Palaeoclimatology, Palaeoecology, 6, 163–195.Google Scholar
  9. Bailey, I. W., & Sinnott, E. W. (1915). A botanical index of Cretaceous and Tertiary climates. Science, 41, 831–834.Google Scholar
  10. Bailey, I. W., & Sinnott, E. W. (1916). The climatic distribution of certain types of angiosperm leaves. American Journal of Botany, 3, 24–39.Google Scholar
  11. Baker-Brosh, K. F., & Peet, R. K. (1997). The ecological significance of lobed and toothed leaves in temperate forest trees. Ecology, 78, 1250–1255.Google Scholar
  12. Baumgartner, K. A., & Meyer, H. W. (2014). Coexistance climate analysis of the late Eocene Florissant flora, Colorado. Geological Society of America – Abstract with Programs, 46, 490.Google Scholar
  13. Billings, F. H. (1905). Precursory leaf serrations of Ulmus. Botanical Gazette, 224–225.Google Scholar
  14. Blonder, B., & Enquist, B. J. (2014). Inferring climate from angiosperm leaf venation networks. New Phytologist, 204, 116–126.Google Scholar
  15. Blonder, B., Nogués-Bravo, D., Borregaard, M. K., Donoghue, I., John, C., Jørgensen, P. M., et al. (2015a). Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology, 96, 972–985.Google Scholar
  16. Blonder, B., Nogues-Bravo, D., Borregaard, M., Lessard, J.P., Violle, C., Svenning, J.C., et al. (2015b). Linking environmental filtering and disequilibrium to biogeography with a community climate. Ecology, 96, 972–985.Google Scholar
  17. Blonder, B., Violle, C., Bentley, L. P., & Enquist, B. J. (2011). Venation networks and the origin of the leaf economics spectrum. Ecology Letters, 14, 91–100.Google Scholar
  18. Blonder, B., Violle, C., Bentley, L. P., & Enquist, B. J. (2014a). Inclusion of vein traits improves predictive power for the leaf economic spectrum: a response to Sack et al. (2013). Journal of Experimental Botany, 65, 5109–5114.Google Scholar
  19. Blonder, B., Royer, D. L., Johnson, K. R., Miller, I., & Enquist, B. J. (2014b). Plant ecological strategies shift across the Cretaceous-Paleogene boundary. PLoS Biology, 12, e1001949.Google Scholar
  20. Blonder, B., Violle, C., & Enquist, B. J. (2013). Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. Journal of Ecology, 101, 981–989.Google Scholar
  21. Borregaard, M., Lessard, J. P., Violle, C., Svenning, J. C., Rahbek, C., & Enquist, B. (2015). Linking environmental filtering and disequilibrium to biogeography with a community climate. Ecology, 96, 972–985.Google Scholar
  22. Boyce, C. K., Brodribb, T. J., Feild, T. S., & Zwieniecki, M. A. (2009). Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings of the Royal Society B: Biological Sciences, 276, 1771–1776.Google Scholar
  23. Boyce, C. K., Lee, J.-E., Feild, T. S., Brodribb, T. J., & Zwieniecki, M. A. (2010). Angiosperms helped put the rain in the rainforests: the impact of plant physiological evolution on tropical biodiversity 1. Annals of the Missouri Botanical Garden, 97, 527–540.Google Scholar
  24. Brodribb, T. J., & Feild, T. S. (2010). Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecology Letters, 13, 175–183.Google Scholar
  25. Brodribb, T. J., Feild, T. S., & Jordan, G. J. (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology, 144, 1890–1898.Google Scholar
  26. Burnham, R. J., Ellis, B., & Johnson, K. R. (2005). Modern tropical forest taphonomy: does high biodiversity affect paleoclimatic interpretations? PALAIOS, 20, 439–451.Google Scholar
  27. Burnham, R. J., Pitman, N. C. A., Johnson, K. R., & Wilf, P. (2001). Habitat-related error in estimating temperatures from leaf margins in a humid tropical forest. American Journal of Botany, 88, 1096–1102.Google Scholar
  28. Burnham, R. J., & Tonkovich, G. S. (2011). Climate, leaves, and the legacy of two giants. New Phytologist, 190, 514–517.Google Scholar
  29. Canny, M. (1990). Tansley review no. 22 what becomes of the transpiration stream? New Phytologist, 114, 341–368.Google Scholar
  30. Chaloner, W. G., & Creber, G. T. (1990). Do fossil plants give a climatic signal? Journal of the Geological Society, 147, 343–350.Google Scholar
  31. Chaney, R. W. (1938). Paleoecological interpretations of Cenozoic plants in western North America. The Botanical Review, 4, 371–396.Google Scholar
  32. Chen, W.-Y., Su, T., Adams, J. M., Jacques, F. M., Ferguson, D. K., & Zhou, Z.-K. (2014). Large-scale dataset from China gives new insights into leaf margin–temperature relationships. Palaeogeography, Palaeoclimatology, Palaeoecology, 402, 73–80.Google Scholar
  33. Chitwood, D. H., Ranjan, A., Martinez, C. C., Headland, L. R., Thiem, T., Kumar, R., et al. (2014). A modern ampelography: a genetic basis for leaf shape and venation patterning in grape. Plant Physiology, 164, 259–272.Google Scholar
  34. Chitwood, D. H., Klein, L. L., O’Hanlon, R., Chacko, S., Greg, M., Kitchen, C., et al. (2016a). Latent developmental and evolutionary shapes embedded within the grapevine leaf. New Phytologist, 210, 343–355.Google Scholar
  35. Chitwood, D. H., Rundell, S. M., Li, D. Y., Woodford, Q. L., Tommy, T. Y., Lopez, J. R., et al. (2016b). Climate and developmental plasticity: interannual variability in grapevine leaf morphology. Plant Physiology, 170, 1480–1491.Google Scholar
  36. Chitwood, D. H., & Sinha, N. R. (2016). Evolutionary and environmental forces sculpting leaf development. Current Biology, 26, R297–R306.Google Scholar
  37. Coley, P. D. (1983). Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological monographs, 53, 209–234.Google Scholar
  38. Comes, H. P., & Kadereit, J. W. (1998). The effect of Quaternary climatic changes on plant distribution and evolution. Trends in Plant Science, 3, 432–438.Google Scholar
  39. Coneva, V., Frank, M. H., de Luis Balaguer, M. A., Li, M., Sozzani, R., & Chitwood, D. H. (2017). Genetic architecture and molecular networks underlying leaf thickness in desert-adapted tomato Solanum pennellii. Plant Physiology, 175, 376–391.Google Scholar
  40. Cope, J. S., Corney, D., Clark, J. Y., Remagnino, P., & Wilkin, P. (2012). Plant species identification using digital morphometrics, A review. Expert Systems with Applications, 39, 7562–7573.Google Scholar
  41. Corney, D., Clark, J. Y., Tang, H. L., & Wilkin, P. (2012a). Automatic extraction of leaf characters from herbarium specimens. Taxon, 61, 231–244.Google Scholar
  42. Corney, D. P., Tang, H. L., Clark, J. Y., Hu, Y., & Jin, J. (2012b). Automating digital leaf measurement: the tooth, the whole tooth, and nothing but the tooth. PLoS ONE, 7, e42112.Google Scholar
  43. Couturier, E., Du Pont, S. C., & Douady, S. (2011). The filling law: a general framework for leaf folding and its consequences on leaf shape diversity. Journal of Theoretical Biology, 289, 47–64.Google Scholar
  44. Couturier, E., Brunel, N., Douady, S., & Nakayama, N. (2012). Abaxial growth and steric constraints guide leaf folding and shape in Acer pseudoplatanus. American Journal of Botany, 99, 1289–1299.Google Scholar
  45. Crifo, C., Currano, E. D., Baresch, A., & Jaramillo, C. (2014). Variations in angiosperm leaf vein density have implications for interpreting life form in the fossil record. Geology, 42, 919–922.Google Scholar
  46. Christophel, D. C., & Blackburn, D. T. (1978). Tertiary megafossil flora of Maslin Bay, South Australia: a preliminary report. Alcheringa, 2, 311–319.Google Scholar
  47. Critchfield, W. B. (1960). Leaf dimorphism in Populus trichocarpa. American Journal of Botany, 47, 699–711.Google Scholar
  48. Critchfield, W. B. (1971). Shoot growth and heterophylly in Acer. Journal of the Arnold Arboretum, 52, 240–266.Google Scholar
  49. Currano, E. D., Jacobs, B. F., Pan, A. D., & Tabor, N. J. (2011). Inferring ecological disturbance in the fossil record: a case study from the Late Oligocene of Ethiopia. Palaeogeography, Palaeoclimatology, Palaeoecology, 309, 242–252.Google Scholar
  50. Currano, E. D., Wilf, P., Wing, S. L., Labandeira, C. C., Lovelock, E. C., & Royer, D. L. (2008). Sharply increased insect herbivory during the Paleocene-Eocene Thermal Maximum. Proceedings of the National Academy of Sciences, USA, 105, 1960–1964.Google Scholar
  51. Davis, M. B. (1986). Climatic instability, time, lags, and community disequilibrium. In J. Diamond & T. J. Case (Eds.), Community ecology (pp. 269–284). New York, NY: Harper & Row.Google Scholar
  52. Davis, M. B., & Shaw, R. G. (2001). Range shifts and adaptive responses to Quaternary climate change. Science, 292, 673–679.Google Scholar
  53. De Boer, H. J., Eppinga, M. B., Wassen, M. J., & Dekker, S. C. (2012). A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution. Nature Communications, 3, 1221.Google Scholar
  54. Diaz, S., Hodgson, J. G., Thompson, K., Cabido, M., Cornelissen, J. H. C., Jalili, A., et al. (2004). The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 15, 295–304.Google Scholar
  55. Dilcher, D. (1973). A paleoclimatic interpretation of the Eocene floras of southeastern North America. In A. Graham (Ed.), Vegetation and vegetational history of northern Latin America (pp. 39–59). Amsterdam: Elsevier.Google Scholar
  56. Dilcher, D. L., Kowalski, E. A., Wiemann, M. C., Hinojosa, L. F., & Lott, T. A. (2009). A climatic and taxonomic comparison between leaf litter and standing vegetation from a Florida swamp woodland. American Journal of Botany, 96, 1108–1115.Google Scholar
  57. Dkhar, J., & Pareek, A. (2014). What determines a leaf’s shape? EvoDevo, 5, 47.Google Scholar
  58. Dolph, G. E., & Dilcher, D. (1980a). Variation in leaf size with respect to climate in Costa Rica. Biotropica, 12, 91–99.Google Scholar
  59. Dolph, G. E., & Dilcher, D. (1980b). Variation in leaf size with respect to climate in the tropics of the Western Hemisphere. Bulletin of the Torrey Botanical Club, 107, 154–162.Google Scholar
  60. Donovan, M. P., Iglesias, A., Wilf, P., Labandeira, C. C., & Cuneo, N. R. (2016). Rapid recovery of Patagonian plant-insect associations after the end-Cretaceous extinction. Nature Ecology and Evolution, 1, 12.Google Scholar
  61. Edwards, E. J., & Donoghue, M. J. (2013). Is it easy to move and easy to evolve? Evolutionary accessibility and adaptation. Journal of Experimental Botany, 64, 4047–4052.Google Scholar
  62. Edwards, E. J., Spriggs, E. L., Chatelet, D. S., & Donoghue, M. J. (2016). Unpacking a century‐old mystery: winter buds and the latitudinal gradient in leaf form. American Journal of Botany, 103, 975–978.Google Scholar
  63. Eldrett, J. S., Greenwood, D. R., Harding, I. C., & Huber, M. (2009). Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature, 459, 969–974.CrossRefGoogle Scholar
  64. Eldrett, J. S., Greenwood, D. R., Polling, M., Brinkhuis, H., & Sluijs, A. (2014). A seasonality trigger for carbon injection at the Paleocene-Eocene Thermal Maximum. Climate of the Past, 10, 759–769.Google Scholar
  65. Eronen, J., Puolamäki, K., Liu, L., Lintulaakso, K., Damuth, J., Janis, C., et al. (2010a). Precipitation and large herbivorous mammals i: estimates from present-day communities. Evolutionary Ecology Research, 12, 217–233.Google Scholar
  66. Eronen, J. T., Polly, P. D., Fred, M., Damuth, J., Frank, D. C., Mosbrugger, V., et al. (2010b). Ecometrics: the traits that bind the past and present together. Integrative Zoology, 5, 88–101.Google Scholar
  67. Feild, T. S., Brodribb, T. J., Iglesias, A., Chatelet, D. S., Baresch, A., Upchurch, G. R., et al. (2011a). Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. Proceedings of the National Academy of Sciences, USA, 108, 8363–8366.Google Scholar
  68. Feild, T. S., Sage, T. L., Czerniak, C., & Iles, W. J. D. (2005). Hydathodal leaf teeth of Chloranthus japonicus (Chloranthaceae) prevent guttation-induced flooding of the mesophyll. Plant, Cell & Environment, 28, 1179–1190.Google Scholar
  69. Feild, T. S., Upchurch Jr, G. R., Chatelet, D. S., Brodribb, T. J., Grubbs, K. C., Samain, M.-S., et al. (2011b). Fossil evidence for low gas exchange capacities for early Cretaceous angiosperm leaves. Paleobiology, 37, 195–213.Google Scholar
  70. Fletcher, T. L., Greenwood, D. R., Moss, P. T., & Salisbury, S. W. (2014). Paleoclimate of the Late Cretaceous (Cenomanian–Turonian) portion of the Winton Formation, central-western Queensland, Australia: new observations based on CLAMP and bioclimatic analysis. PALAIOS, 29, 121–128.Google Scholar
  71. Flynn, A. G., Peppe D. J., Abbuhl, B., & Williamson, T. E. (2016). Paleoclimate and Paleoecology of Diverse Early Paleocene Fossil Flora from the San Juan Basin, New Mexico, USA. XIV International Palynologival Congress – X International Organisation of Paleobotany Conference.Google Scholar
  72. Fricke, H. C., & Wing, S. L. (2004). Oxygen isotope and paleobotanical estimates of temperature and δ18O-latitude gradients over North America during the Early Eocene. American Journal of Science, 304, 612–635.Google Scholar
  73. Gates, D. M. (1980). Biophysical ecology. New York: Springer-Verlag.Google Scholar
  74. Givnish, T. J. (1984). Leaf and canopy adaptations in tropical forests. In E. Medina, H. A. Mooney & C. Vasquez-Yanes (Eds.), Physiological ecology of plants of the wet tropics (pp. 51–84). The Hague: Junk.Google Scholar
  75. Green, W. A. (2006). Loosening the CLAMP: an exploratory graphical approach to the Climate Leaf Analysis Multivariate Program. Palaeontologia Electronica, 9, 1–17.Google Scholar
  76. Green, W. A., Little, S. A., Price, C. A., Wing, S. L., Smith, S. Y., Kotrc, B., et al. (2014). Reading the leaves: a comparison of leaf rank and automated areole measurement for quantifying aspects of leaf venation. Applications in Plant Sciences, 2, 1400006.Google Scholar
  77. Greenwood, D. R. (1991). The Taphonomy of plant macrofossils. Ch. 7. In S. K. Donovan (Ed.), The processes of fossilization (pp. 141–169). London: Belhaven Press.Google Scholar
  78. Greenwood, D. R. (1992). Taphonomic constraints on foliar physiognomic interpretations of late Cretaceous and Tertiary paleoclimates. Review of Palaeobotany and Palynology, 71, 149–190.Google Scholar
  79. Greenwood, D. R. (1994). Palaeobotanical evidence for Australian Tertiary climates. In R. S. Hill (Ed.), History of the Australian vegetation: Cretaceous to recent (pp. 44–59). Cambridge: Cambridge University Press.Google Scholar
  80. Greenwood, D. R. (2005). Leaf margin analysis: taphonomic constraints. PALAIOS, 20, 498–505.Google Scholar
  81. Greenwood, D. R. (2007). Fossil angiosperm leaves and climate: from Wolfe and Dilcher to Burnham and Wilf. Advances in Angiosperm Paleobotany and Paleoclimatic Reconstruction, 258, 95–108.Google Scholar
  82. Greenwood, D. R., Moss, P. T., Rowett, A. I., Vadala, A. J., & Keefe, R. L. (2003). Plant communities and climate change in southeastern Australia during the early Paleogene. Special Papers-Geological Society of America, 365–380.Google Scholar
  83. Greenwood, D. R., Archibald, S. B., Mathewes, R. W., & Moss, P. T. (2005). Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington state: climates and ecosystems across an Eocene landscape. Canadian Journal of Earth Sciences, 42, 167–185.Google Scholar
  84. Greenwood, D. R., Wilf, P., Wing, S., & Christophel, D. C. (2004). Paleotemperature estimation using leaf-margin analysis: is Australia different? PALAIOS, 19, 129–142.Google Scholar
  85. Greenwood, D. R., & Wing, S. L. (1995). Eocene continental climates and latitudinal temperature gradients. Geology, 23, 1044–1048.Google Scholar
  86. Gregory-Wodzicki, K. M. (2000). Relationship between leaf morphology and climate, Bolivia: implications for estimating paleoclimate from fossil floras. Paleobiology, 26, 668–688.Google Scholar
  87. Gregory, K. (1994). Palaeoclimate and palaeoelevation of the 35 Ma Florissant flora, Front Range, Colorado. Palaeoclimates, 1, 23–57.Google Scholar
  88. Gregory, K. M., & McIntosh, W. C. (1996). Paleoclimate and paleoelevation of the Oligocene Pitch-Pinnacle flora, Sawatch Range, Colorado. Geological Society of America Bulletin, 108, 546–561.Google Scholar
  89. Grichuk, V. (1969). An attempt to reconstruct certain elements of the climate of the Northern Hemisphere in the Atlantic Period of the Holocene. In M. I. Neishtadt (Ed.), Golosten (pp. 41–57). Moscow: 8th INQUA Congress, Izd-vo Nauka.Google Scholar
  90. Grimm, G. W., & Denk, T. (2012). Reliability and resolution of the Coexistence Approach—a revalidation using modern-day data. Review of Palaeobotany and Palynology, 172, 33–47.Google Scholar
  91. Grimm, G. W., & Potts, A. J. (2016). Fallacies and fantasies: the theoretical underpinnings of the Coexistence Approach for palaeoclimate reconstruction. Climate of the Past, 12, 611–622.Google Scholar
  92. Grimm, G. W., Bouchal, J. M., Denk, T., & Potts, A. (2016). Fables and foibles: a critical analysis of the Palaeoflora database and the Coexistence approach for palaeoclimate reconstruction. Review of Palaeobotany and Palynology, 233, 216–235.Google Scholar
  93. Hall, J. B., & Swaine, M. D. (1981). Distribution and ecology of vascular plants in a tropical rain forest: Forest vegetation in Ghana. Dordrecht: Springer Science+Business Media.Google Scholar
  94. Halloy, S. R. P., & Mark, A. F. (1996). Comparative leaf morphology spectra of plant communities in New Zealand, the Andes and the European Alps. Journal of the Royal Society of New Zealand, 26, 41–78.Google Scholar
  95. Harbert, R. S., & Nixon, K. C. (2015). Climate reconstruction analysis using coexistence likelihood estimation (CRACLE): a method for the estimation of climate using vegetation. American Journal of Botany, 102, 1277–1289.Google Scholar
  96. Heer, O. (1870). Die Miocene flora und fauna Spitzbergens. Flora Fossilis Artica, 1–3, 1–98.Google Scholar
  97. Heer, O. (1878a). Florae fossilis Sachalinensis. Flora Fossilis Artica, 4–5, 1–61.Google Scholar
  98. Heer, O. (1878b). Fossilen flora Sibiriens und des Amurlandes. Flora Fossilis Artica, 4–5, 1–58.Google Scholar
  99. Heer, O. (1882). Die fossile flora Gronlands, Erster Theil. Flora Fossilis Artica, 6, 1–147.Google Scholar
  100. Hickey, L. J. (1977). Stratigraphy and paleobotany of the Golden Valley Formation (Early Tertiary) of western North Dakota. Geological Society of America Memoir, 150, 1–183.Google Scholar
  101. Hickey, L. J., Johnson, K. R., & Dawson, M. R. (1988). The stratigraphy, sedimentology, and fossils of the Haughton Formation: a post‐impact crater‐fill, Devon Island, NWT, Canada. Meteoritics, 23, 221–231.Google Scholar
  102. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.Google Scholar
  103. Hinojosa, L. F., Armesto, J. J., & Villagran, C. (2006a). Are Chilean coastal forests pre-Pleistocene relicts? Evidence from foliar physiognomy, palaeoclimate, and phytogeography. Journal of Biogeography, 33, 331–341.Google Scholar
  104. Hinojosa, L. F., Pesce, O., Yabe, A., Uemura, K., & Nishida, H. (2006b). Physiognomical analysis and paleoclimate of the Ligorio Márquez fossil flora, Ligorio Márquez Formation, 46°45′s, Chile. In H. Nishida (Ed.), Post-Cretaceous floristic changes in southern Patagonia, Chile (pp. 45–55). Tokyo: Chuo University Press.Google Scholar
  105. Hinojosa, L. F., Pérez, F., Gaxiola, A., & Sandoval, I. (2011). Historical and phylogenetic constraints on the incidence of entire leaf margins: insights from a new South American model. Global Ecology and Biogeography, 20, 380–390.Google Scholar
  106. Holdridge, L. R. (1967). Life zone ecology. San Jose, Costa Rica: Tropical Science Center.Google Scholar
  107. Huff, P. M., Wilf, P., & Azumah, E. J. (2003). Digital future for paleoclimate estimation from fossil leaves? Preliminary results. PALAIOS, 18, 266–274.Google Scholar
  108. Jacobs, B. F. (1999). Estimation of rainfall variables from leaf characters in tropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 145, 231–250.Google Scholar
  109. Jacobs, B. F. (2002). Estimation of low-latitude paleoclimates using fossil angiosperm leaves: examples from the Miocene Tugen Hills, Kenya. Paleobiology, 28, 399–421.Google Scholar
  110. Jacobs, B. F., & Deino, A. L. (1996). Test of climate-leaf physiognomy regression models, their application to two Miocene floras from Kenya, and 40Ar/39Ar dating of the Late Miocene Kapturo site. Palaeogeography, Palaeoclimatology, Palaeoecology, 123, 259–271.Google Scholar
  111. Jacobs, B. F., & Herendeen, P. S. (2004). Eocene dry climate and woodland vegetation in tropical Africa reconstructed from fossil leaves from northern Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology, 213, 115–123.Google Scholar
  112. Jackson, S. T., & Overpeck, J. T. (2000). Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology, 26, 194–220.Google Scholar
  113. Jacques, F. M., Su, T., Spicer, R. A., Xing, Y., Huang, Y., Wang, W., et al. (2011). Leaf physiognomy and climate: are monsoon systems different? Global and Planetary Change, 76, 56–62.Google Scholar
  114. Jones, C. S., Bakker, F. T., Schlichting, C. D., & Nicotra, A. B. (2009). Leaf shape evolution in the South African genus Pelargonium l’her. (Geraniaceae). Evolution, 63, 479–497.Google Scholar
  115. Jordan, G. J. (1997). Uncertainty in palaeoclimatic reconstructions based on leaf physiognomy. Australian Journal of Botany, 45, 527–547.Google Scholar
  116. Jordan, G. J. (2011). A critical framework for the assessment of biological palaeoproxies: predicting past climate and levels of atmospheric CO2 from fossil leaves. New Phytologist, 192, 29–44.Google Scholar
  117. Karst, A. L., & Lechowicz, M. J. (2007). Are correlations among foliar traits in ferns consistent with those in the seed plants? New Phytologist, 173, 306–312.Google Scholar
  118. Kelly, A. E., & Goulden, M. L. (2008). Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences, USA, 105, 11823–11826.Google Scholar
  119. Kennedy, E. M. (1998). Cretaceous and Tertiary megafloras from New Zealand and their climate signals. Ph.D. Dissertation, Open University.Google Scholar
  120. Kennedy, E. M., Arens, N. C., Reichgelt, T., Spicer, R. A., Spicer, T. E., Stranks, L., et al. (2014). Deriving temperature estimates from Southern Hemisphere leaves. Palaeogeography, Palaeoclimatology, Palaeoecology, 412, 80–90.Google Scholar
  121. Kennedy, E. M., Spicer, R. A., & Rees, P. M. (2002). Quantitative palaeoclimate estimates from the late Cretaceous and Paleocene leaf floras in the northwest of the South Island, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 184, 321–345.Google Scholar
  122. Kershaw, A. (1997). A bioclimatic analysis of early to middle Miocene Brown Coal floras, Latrobe Valley, south-eastern Australia. Australian Journal of Botany, 45, 373–387.Google Scholar
  123. Kershaw, A., & Nix, H. (1988). Quantitative palaeoclimatic estimates from pollen data using bioclimatic profiles of extant taxa. Journal of Biogeography, 589–602.Google Scholar
  124. Khan, M. A., Spicer, R. A., Bera, S., Ghosh, R., Yang, J., Spicer, T. E. V., et al. (2014). Miocene to Pleistocene floras and climate of the eastern Himalayan Siwaliks, and new palaeoelevation estimates for the Namling-Oiyug Basin. Tibet. Global and Planetary Change, 113, 1–10.Google Scholar
  125. Kobayashi, H., Kresling, B., & Vincent, J. F. (1998). The geometry of unfolding tree leaves. Proceedings of the Royal Society of London B: Biological Sciences, 265, 147–154.Google Scholar
  126. Kovach, W. L., & Spicer, R. (1996). Canonical correspondence analysis of leaf physiognomy: a contribution to the development of a new palaeoclimatological tool. Paleoclimates, 2, 125–138.Google Scholar
  127. Kowalski, E. A. (2002). Mean annual temperature estimation based on leaf morphology: a test from tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 188, 141–165.Google Scholar
  128. Kowalski, E. A., & Dilcher, D. L. (2003). Warmer paleotemperatures for terrestrial ecosystems. Proceedings of the National Academy of Sciences, USA, 100, 167–170.Google Scholar
  129. Küchler, A. W. (1964). Potential natural vegetation of the conterminous United States. New York: American Geographical Society.Google Scholar
  130. Labandeira, C. C., & Currano, E. D. (2013). The fossil record of plant-insect dynamics. Annual Review of Earth and Planetary Sciences, 41, 287–311.Google Scholar
  131. Larcher, W., & Winter, A. (1981). Frost susceptibility of palms: Experimental data and their interpretations. Principes, 25, 143–152.Google Scholar
  132. Lawing, A. M., Eronen, J. T., Blois, J. L., Graham, C. H., & Polly, P. D. (2016). Community functional trait composition at the continental scale: The effects of non-ecological processes. Ecography, 13, 1–13.Google Scholar
  133. Lawing, A. M., Head, J. J., & Polly, P. D. (2012). The ecology of morphology: the ecometrics of locomotion and macroenvironment in north american snakes. In J. Louys (Ed.), Paleontology in ecology and conservation (pp. 117–146). Heidelberg: Springer.Google Scholar
  134. Li, L., McCormack, M. L., Ma, C., Kong, D., Zhang, Q., Chen, X., et al. (2015). Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecology letters, 18, 899–906.Google Scholar
  135. Liang, M.-M., Bruch, A., Collinson, M., Mosbrugger, V., Li, C.-S., Sun, Q.-G., et al. (2003). Testing the climatic estimates from different palaeobotanical methods: an example from the middle Miocene Shanwang flora of China. Palaeogeography, Palaeoclimatology, Palaeoecology, 198, 279–301.Google Scholar
  136. Liao, F., Peng, J., & Chen, R. (2017). LeafletAnalyzer, an automated software for quantifying, comparing and classifying blade and serration features of compound leaves during development, and among induced mutants and natural variants in the legume Medicago truncatula. Frontiers in plant science, 8, 915.Google Scholar
  137. Lielke, K., Manchester, S., & Meyer, H. (2012). Reconstructing the environment of the northern Rocky Mountains during the Eocene/Oligocene transition: Constraints from the palaeobotany and geology of south-western Montana, USA. Acta Palaeobotanica, 52, 317–358.Google Scholar
  138. Little, S. A., Kembel, S. W., & Wilf, P. (2010). Paleotemperature proxies from leaf fossils reinterpreted in light of evolutionary history. PLoS ONE, 5, e15161.Google Scholar
  139. MacGinitie, H. D. (1953). Fossil plants of the Florissant Beds. Colorado: Carnegie Institution of Washington.Google Scholar
  140. MacLeod, N., & Steart, D. (2015). Automated leaf physiognomic character identification from digital images. Paleobiology, 41, 528–553.Google Scholar
  141. Malhado, A., Malhi, Y., Whittaker, R., Ladle, R., Ter Steege, H., Phillips, O., et al. (2009). Spatial trends in leaf size of Amazonian rainforest trees. Biogeosciences, 6, 1563–1576.Google Scholar
  142. McDonald, P. G., Fonseca, C. R., Overton, J. M., & Westoby, M. (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Functional Ecology, 17, 50–57.Google Scholar
  143. McElwain, J. C., Montañez, I., White, J. D., Wilson, J. P., & Yiotis, C. (2016). Was atmospheric CO2 capped at 1000 ppm over the past 300 million years? Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 653–658.Google Scholar
  144. Merkhofer, L., Wilf, P., Haas, M. T., Kooyman, R. M., Sack, L., Scoffoni, C., et al. (2015). Resolving Australian analogs for an Eocene Patagonian paleorainforest using leaf size and floristics. American Journal of Botany, 102, 1160–1173.Google Scholar
  145. Merriam, C. H. (1894). Laws of temperature control of the geographic distribution of terrestrial animals and plants. National Geographic Magazine, 6, 229–238.Google Scholar
  146. Michaletz, S. T., Weiser, M. D., Zhou, J., Kaspari, M., Helliker, B. R., & Enquist, B. J. (2015). Plant thermoregulation: energetics, trait–environment interactions, and carbon economics. Trends in Ecology & Evolution, 30, 714–724.Google Scholar
  147. Michel, L. A., Peppe, D. J., Lutz, J. A., Driese, S. G., Dunsworth, H. M., Harcourt-Smith, W. E., et al. (2014). Remnants of an ancient forest provide ecological context for early Miocene fossil apes. Nature Communications, 5, 3236.Google Scholar
  148. Miller, I. M., Brandon, M. T., & Hickey, L. J. (2006). Using leaf margin analysis to estimate mid-Cretaceous (Albian) paleolatitude of the Baja BC block. Earth and Planetary Science Letters, 245, 95–114.Google Scholar
  149. Mooney, H. A., Björkman, O., & Collatz, G. J. (1978). Photosynthetic acclimation to temperature in the desert shrub, Larrea divaricata I. Carbon dioxide exchange characteristics of intact leaves. Plant Physiology, 61, 406–410.Google Scholar
  150. Monteith, J., & Unsworth, M. (2007). Principles of environmental physics, Academic Press.Google Scholar
  151. Mosbrugger, V., & Utescher, T. (1997). The coexistence approach – a method for quantitative reconstructions of tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 134, 61–86.Google Scholar
  152. New, M., Lister, D., Hulme, M., & Makin, I. (2002). A high-resolution data set of surface climate over global land areas. Climate research, 21, 1–25.Google Scholar
  153. Parkhurst, D. F., & Loucks, O. (1972). Optimal leaf size in relation to environment. The Journal of Ecology, 60, 505–537.Google Scholar
  154. Peppe, D. J., Hickey, L. J., Miller, I. M., & Green, W. A. (2008). A morphotype catalogue, floristic analysis, and stratigraphic description of the Aspen Shale flora (Cretaceous-Albian) of southwestern Wyoming. Bulletin of the Peabody Museum of Natural History, 49, 181–208.Google Scholar
  155. Peppe, D. J., Lemons, C. R., Royer, D. L., Wing, S. L., Wright, I. J., Lusk, C. H., et al. (2014). Biomechanical and leaf-climate relationships: a comparison of ferns and seed plants. American Journal of Botany, 101, 338–347.Google Scholar
  156. Peppe, D. J., Royer, D. L., Cariglino, B., Oliver, S. Y., Newman, S., Leight, E., et al. (2011). Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 190, 724–739.Google Scholar
  157. Peppe, D. J., Royer, D. L., Wilf, P., & Kowalski, E. A. (2010). Quantification of large uncertainties in fossil leaf paleoaltimetry. Tectonics, 29, TC3015.Google Scholar
  158. Pérez-Pérez, J. M., Esteve-Bruna, D., & Micol, J. L. (2010). QTL analysis of leaf architecture. Journal of Plant Research, 123, 15–23.Google Scholar
  159. Polly, P. D., Eronen, J. T., Fred, M., Dietl, G. P., Mosbrugger, V., Scheidegger, C., et al. (2011). History matters: Ecometrics and integrative climate change biology. Proceedings of the Royal Society of London B, Biological Sciences, 278, 1131–1140.Google Scholar
  160. Polly, P. D., & Sarwar, S. (2014). Extinction, extirpation, and exotics: Effects on the correlation between traits and environment at the continental level. Annales Zoologici Fennici, 51, 209–226.Google Scholar
  161. Price, C. A., Wing, S., & Weitz, J. S. (2012). Scaling and structure of dicotyledonous leaf venation networks. Ecology letters, 15, 87–95.Google Scholar
  162. Pross, J., Contreras, L., Bijl, P. K., Greenwood, D. R., Bohaty, S. M., Schouten, S., et al. (2012). Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature, 488, 73–77.Google Scholar
  163. Rakotoarinivo, M., Blach-Overgaard, A., Baker, W. J., Dransfield, J., Moat, J., & Svenning, J.-C. (2013). Palaeo-precipitation is a major determinant of palm species richness patterns across Madagascar: a tropical biodiversity hotspot. Proceedings of the Royal Society of London B, Biological Sciences, 280, 20123048.Google Scholar
  164. Reich, P. B. (2014). The world-wide ‘fast–slow’plant economics spectrum: A traits manifesto. Journal of Ecology, 102, 275–301.Google Scholar
  165. Reich, P. B., Ellsworth, D. S., Walters, M. B., Vose, J. M., Gresham, C., Volin, J. C., et al. (1999). Generality of leaf trait relationships: a test across six biomes. Ecology, 80, 1955–1969.Google Scholar
  166. Reich, P. B., Walters, M. B., & Ellsworth, D. S. (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences, USA, 94, 13730–13734.Google Scholar
  167. Reichgelt, T., Kennedy, E. M., Mildenhall, D. C., Conran, J. G., Greenwood, D. R., & Lee, D. E. (2013). Quantitative palaeoclimate estimates for Early Miocene southern New Zealand: evidence from Foulden Maar. Palaeogeography, Palaeoclimatology, Palaeoecology, 378, 36–44.Google Scholar
  168. Rodriguez, R. E., Debernardi, J. M., & Palatnik, J. F. (2014). Morphogenesis of simple leaves: regulation of leaf size and shape. Wiley Interdisciplinary Reviews: Developmental Biology, 3, 41–57.Google Scholar
  169. Royer, D. L. (2012a). Climate reconstruction from leaf size and shape: New developments and challenges. The Paleontological Society Papers, 18, 195–212.Google Scholar
  170. Royer, D. L. (2012b). Leaf shape responds to temperature but not CO2 in Acer rubrum. PLoS ONE, 7, e49559.Google Scholar
  171. Royer, D. L., Kooyman, R. M., Little, S. A., & Wilf, P. (2009a). Ecology of leaf teeth: a multi-site analysis from an Australian subtropical rainforest. American Journal of Botany, 96, 738–750.Google Scholar
  172. Royer, D. L., McElwain, J. C., Adams, J. M., & Wilf, P. (2008). Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii. New Phytologist, 179, 808–817.Google Scholar
  173. Royer, D. L., Meyerson, L. A., Robertson, K. M., & Adams, J. M. (2009b). Phenotypic plasticity of leaf shape along a temperature gradient in Acer rubrum. PLoS ONE, 4, e7653.Google Scholar
  174. Royer, D. L., Miller, I. M., Peppe, D. J., & Hickey, L. J. (2010). Leaf economic traits from fossils support a weedy habit for early angiosperms. American Journal of Botany, 97, 438–445.Google Scholar
  175. Royer, D. L., Peppe, D. J., Wheeler, E. A., & Niinemets, U. (2012). Roles of climate and functional traits in controlling toothed vs. untoothed leaf margins. American Journal of Botany, 99, 915–922.Google Scholar
  176. Royer, D. L., Sack, L., Wilf, P., Lusk, C. H., Jordan, G. J., Niinemets, U., et al. (2007). Fossil leaf economics quantified: calibration, Eocene case study, and implications. Paleobiology, 33, 574–589.Google Scholar
  177. Royer, D. L., & Wilf, P. (2006). Why do toothed leaves correlate with cold climates? Gas exchange at leaf margins provides new insights into a classic paleotemperature proxy. International Journal of Plant Sciences, 167, 11–18.Google Scholar
  178. Royer, D. L., Wilf, P., Janesko, D. A., Kowalski, E. A., & Dilcher, D. L. (2005). Correlations of climate and plant ecology to leaf size and shape: Potential proxies for the fossil record. American Journal of Botany, 92, 1141–1151.Google Scholar
  179. Sack, L., & Frole, K. (2006). Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology, 87, 483–491.Google Scholar
  180. Sack, L., & Scoffoni, C. (2013). Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198, 983–1000.Google Scholar
  181. Sack, L., Scoffoni, C., John, G. P., Poorter, H., Mason, C. M., Mendez-Alonzo, R., et al. (2013). How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. Journal of Experimental Botany, 64, 4053–4080.Google Scholar
  182. Sack, L., Scoffoni, C., John, G. P., Poorter, H., Mason, C. M., Mendez-Alonzo, R., et al. (2014). Leaf mass per area is independent of vein length per area: avoiding pitfalls when modelling phenotypic integration (reply to). Journal of Experimental Botany, 65, 5115–5123.Google Scholar
  183. Sack, L., Scoffoni, C., McKown, A. D., Frole, K., Rawls, M., Havran, J. C., et al. (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications, 3, 837.Google Scholar
  184. Sack, L., Tyree, M. T., & Holbrook, N. M. (2005). Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytologist, 167, 403–413.Google Scholar
  185. Salvucci, M. E., & Crafts-Brandner, S. J. (2004). Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiology, 134, 1460–1470.Google Scholar
  186. Schmerler, S. B., Clement, W. L., Beaulieu, J. M., Chatelet, D. S., Sack, L., Donoghue, M. J., et al. (2012). Evolution of leaf form correlates with tropical–temperate transitions in Viburnum (Adoxaceae). Proceedings of the Royal Society B, Biological Sciences, 279, 3905–3913.Google Scholar
  187. Scoffoni, C., Rawls, M., McKown, A., Cochard, H., & Sack, L. (2011). Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiology, 156, 832–843.Google Scholar
  188. Sharpe, S. E. (2002). Constructing seasonal climograph overlap envelopes from Holocene packrat midden contents, Dinosaur National Monument, Colorado. Quaternary Research, 57, 306–313.Google Scholar
  189. Shipley, B., Lechowicz, M. J., Wright, I., & Reich, P. B. (2006). Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 87, 535–541.Google Scholar
  190. Sinka, K., & Atkinson, T. (1999). A mutual climatic range method for reconstructing palaeoclimate from plant remains. Journal of the Geological Society, 156, 381–396.Google Scholar
  191. Smith, R. Y., Basinger, J. F., & Greenwood, D. R. (2012). Early Eocene plant diversity and dynamics in the Falkland flora, Okanagan Highlands, British Columbia, Canada. Palaeobiodiversity and Palaeoenvironments, 92, 309–328.Google Scholar
  192. Spicer, R. A. (2007). Recent and future developments of CLAMP: building on the legacy of Jack A. Wolfe. Courier Forschungsinstitut Senckenberg, 258, 109–118.Google Scholar
  193. Spicer, R. A. (2016). CLAMP, climate leaf analysis multivariate program, The Open University.Google Scholar
  194. Spicer, R. A., Herman, A. B., & Kennedy, E. M. (2004). Foliar physiognomic record of climatic conditions during dormancy: climate leaf analysis multivariate program (CLAMP) and the cold month mean temperature. The Journal of Geology, 112, 685–702.Google Scholar
  195. Spicer, R. A., Herman, A. B., & Kennedy, E. M. (2005). The sensitivity of CLAMP to taphonomic loss of foliar physiognomic characters. PALAIOS, 20, 429–438.Google Scholar
  196. Spicer, R. A., Valdes, P. J., Spicer, T. E. V., Craggs, H. J., Srivastava, G., Mehrotra, R. C., et al. (2009). New developments in CLAMP: calibration using global gridded meteorological data. Palaeogeography, Palaeoclimatology, Palaeoecology, 283, 91–98.Google Scholar
  197. Spicer, R. A., & Yang, J. (2010). Quantification of uncertainties in fossil leaf paleoaltimetry: Does leaf size matter? Tectonics, 29, TC6001.Google Scholar
  198. Steart, D. C., Spicer, R. A., & Bamford, M. K. (2011). Is southern Africa different? An investigation of the relationship between leaf physiognomy and climate in southern African mesic vegetation. Review of Palaeobotany and Palynology, 162, 607–620.Google Scholar
  199. Stranks, L., & England, P. (1997). The use of a resemblance function in the measurement of climatic parameters from the physiognomy of woody dicotyledons. Palaeogeography, Palaeoclimatology, Palaeoecology, 131, 15–28.Google Scholar
  200. Su, T., Xing, Y. W., Liu, Y. S., Jacques, F. M. B., Chen, W. Y., Huang, Y. S., et al. (2010). Leaf margin analysis: a new equation from humid to mesic forests in China. PALAIOS, 25, 234–238.Google Scholar
  201. Svenning, J.-C., & Sandel, B. (2013). Disequilibrium vegetation dynamics under future climate change. American Journal of Botany, 100, 1266–1286.Google Scholar
  202. Teodoridis, V., Mazouch, P., Spicer, R. A., & Uhl, D. (2011). Refining CLAMP—investigations towards improving the Climate Leaf Analysis Multivariate Program. Palaeogeography, Palaeoclimatology, Palaeoecology, 299, 39–48.Google Scholar
  203. ter Braak, C. J. F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167–1179.Google Scholar
  204. Thompson, R., Anderson, K., Pelltier, R., Strickland, L., Bartlein, P., & Shafer, S. L. (2012). Quantitative estimation of climatic parameters from vegetation data in North America by the mutual climatic range technique. Quaternary Science Reviews, 51, 18–39.Google Scholar
  205. Traiser, C., Klotz, S., Uhl, D., & Mosbrugger, V. (2005). Environmental signals from leaves–a physiognomic analysis of European vegetation. New Phytologist, 166, 465–484.Google Scholar
  206. Upchurch, G., & Wolfe, J. (1987). Mid-Cretaceous to Early Tertiary vegetation and climate: Evidence from fossil leaves and woods. In E. M. Friis, W. Chaloner & P. R. Crane (Eds.), Origins of angiosperms and their biological consequences (pp. 75–106). Cambridge: Cambridge University Press.Google Scholar
  207. Utescher, T., Bruch, A. A., Erdei, B., François, L., Ivanov, D., Jacques, F. M. B., et al. (2014). The coexistence approach—theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeography, Palaeoclimatology, Palaeoecology, 410, 58–73.Google Scholar
  208. Vaughan, J. (2015). Investigating the genetic basis of natural leaf shape variation in Arabidopsis thaliana, Ph.D. Dissertation, University of York.Google Scholar
  209. Veloz, S. D., Williams, J. W., Blois, J. L., He, F., Otto-Bliesner, B., & Liu, Z. (2012). No-analog climates and shifting realized niches during the late Quaternary: implications for 21st-Century predictions by species distribution models. Global Change Biology, 18, 1698–1713.Google Scholar
  210. Vogel, S. (1970). Convective cooling at low airspeeds and the shapes of broad leaves. Journal of Experimental Botany, 21, 91–101.Google Scholar
  211. Vogel, S. (2009). Leaves in the lowest and highest winds: temperature, force and shape. New Phytologist, 183, 13–26.Google Scholar
  212. Von Humboldt, A., & Bonpland, A. (1807). Essai sur la géographie des plantes : accompagné d'un tableau physique des régions équinoxiales, fondé sur des mesures exécutées, depuis le dixième degré de latitude boréale jusqu'au dixième degré de latitude australe, pendant les années 1799, 1800, 1801, 1802 et 1803. Paris: Chez Levrault, Schoell et compagnie. Translated by Sylvie Romanowski as Essay on the geography of plants. In S. T. Jackson (Ed.). (2009). Essay on the geography of plants (pp. 57–143). Chicago: University of Chicago Press.Google Scholar
  213. Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany, 61(3): 199–223.Google Scholar
  214. Webb, L. J. (1959). A physiognomic classification of Australian rain forests. Journal of Ecology, 47, 551–570.Google Scholar
  215. Webb, L. J. (1968). Environmental relationships of structural types Australian rain forest vegetation. Ecology, 49, 296–311.Google Scholar
  216. West, C. K., Greenwood, D. R., & Basinger, J. F. (2015). Was the Arctic Eocene ‘rainforest’ monsoonal? Estimates of seasonal precipitation from early Eocene megafloras from Ellesmere Island, Nunavut. Earth & Planetary Science Letters, 427, 18–30.Google Scholar
  217. Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., & Wright, I. J. (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125–159.Google Scholar
  218. Whittaker, R. H. (1975). Communities and ecosystems. New York: Macmillan.Google Scholar
  219. Wiemann, M. C., Manchester, S. R., Dilcher, D. L., Hinojosa, L. F., & Wheeler, E. A. (1998). Estimation of temperature and precipitation from morphological characters of dicotyledonous leaves. American Journal of Botany, 85, 1796–1802.Google Scholar
  220. Wilf, P. (1997). When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology, 23, 373–390.Google Scholar
  221. Wilf, P. (2008). Fossil angiosperm leaves: paleobotany’s difficult children prove themselves. Paleontological Society Papers, 14, 319–333.Google Scholar
  222. Wilf, P., Wing, S. L., Greenwood, D. R., & Greenwood, C. L. (1998). Using fossil leaves as paleoprecipitation indicators: an Eocene example. Geology, 26, 203–206.Google Scholar
  223. Wilf, P., Wing, S. L., Greenwood, D. R., & Greenwood, C. L. (1999). Using fossil leaves as paleoprecipitation indicators: an Eocene example: Reply. Geology, 27, 91–92.Google Scholar
  224. Wilf, P., Labandeira, C. C., Johnson, K. R., & Ellis, B. (2006). Decoupled plant and insect diversity after the end-Cretaceous extinction event. Science, 313, 1112–1115.Google Scholar
  225. Wilf, P., Little, S. A., Iglesias, A., del Carmen Zamaloa, M., Gandolfo, M. A., Cuneo, N. R., & Johnson, K. R. (2009). Papuacedrus (Cupressaceae) in Eocene Patagonia: a new fossil link to Australasian rainforests. American Journal of Botany, 96(11): 2031–2047.Google Scholar
  226. Wilf, P., Zhang, S., Chikkerur, S., Little, S. A., Wing, S. L., & Serre, T. (2016). Computer vision cracks the leaf code. Proceedings of the National Academy of Sciences, USA, 113, 3305–3310.Google Scholar
  227. Wing, S., Bao, H., & Koch, P. L. (2000). An Eocene cool period? Evidence for continental cooling during the warmest part of the Cenozoic. In B. T. Huber, K. G. MacCleod & S. Wing (Eds.), Warm climates in Earth history (pp. 197–237). Cambridge, UK: Cambridge University Press.Google Scholar
  228. Wing, S., & Greenwood, D. R. (1993). Fossils and fossil climate: the case for equable continental interiors in the Eocene. Philosophical Transactions of the Royal Society of London Series B, 341, 243–252.Google Scholar
  229. Wing, S. L., Herrera, F., Jaramillo, C. A., Gomez-Navarro, C., Wilf, P., & Labandeira, C. C. (2009). Late Paleocene fossils from the Cerrejon Formation, Colombia, are the earliest record of neotropical rainforest. Proceedings of the National Academy of Sciences, USA, 106, 18627–18632.Google Scholar
  230. Wolfe, J., & Hopkins, D. (1967). Climatic changes recorded by Tertiary land floras in northwestern North America. In K. Hatai (Ed.), Tertiary correlations and climatic changes in the Pacific (pp. 67–76). Tokyo, Japan: Eleventh Pacific Science Congress.Google Scholar
  231. Wolfe, J. A. (1971). Tertiary climatic fluctuations and methods of analysis of Tertiary floras. Palaeogeography, Palaeoclimatology, Palaeoecology, 9, 27–57.Google Scholar
  232. Wolfe, J. A. (1978). A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere: data from fossil plants make it possible to reconstruct Tertiary climatic changes, which may be correlated with changes in the inclination of the Earth’s rotational axis. American Scientist, 66, 694–703.Google Scholar
  233. Wolfe, J. A. (1979). Temperature parameters of humid to mesic forests of eastern Asia and relation to forests of other regions in the Northern Hemisphere and Australasia. United States Geological Survey Professional Paper, 1106, 1–37.Google Scholar
  234. Wolfe, J. A. (1990). Palaeobotanical evidence for a marked temperature increase following the Cretaceous/Tertiary boundary. Nature, 343, 153–156.Google Scholar
  235. Wolfe, J. A. (1993). A method of obtaining climatic parameters from leaf assemblages. United States Geological Survey Bulletin, 2040, 1–71.Google Scholar
  236. Wolfe, J. A. (1995). Paleoclimatic estimates from Tertiary leaf assemblages. Annual Review of Earth and Planetary Sciences, 23, 119–142.Google Scholar
  237. Wolfe, J. A., & Spicer, R. A. (1999). Fossil leaf character states; multivariate analyses. In T. P. Jones & N. P. Rowe (Eds.), Fossil plants and spores: Modern techniques (pp. 233–239). London, United Kingdon: Geological Society.Google Scholar
  238. Wright, I. J., Reich, P. B., Cornelissen, J. H. C., Falster, D. S., Groom, P. K., Hikosaka, K., et al. (2005). Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 14, 411–421.Google Scholar
  239. Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827.Google Scholar
  240. Wright, I. J., Dong, N., Maire, V., Prentice, I. C., Westoby, M., Díaz, S., et al. (2017). Global climatic drivers of leaf size. Science, 357, 917–921.Google Scholar
  241. Yang, J., Spicer, R. A., Spicer, T. E., Arens, N. C., Jacques, F., Su, T., et al. (2015). Leaf form–climate relationships on the global stage: an ensemble of characters. Global Ecology and Biogeography, 24, 1113–1125.Google Scholar
  242. Yang, J., Spicer, R. A., Spicer, T. E., & Li, C.-S. (2011). ‘CLAMP online’: a new web-based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America. Palaeobiodiversity and Palaeoenvironments, 91, 163–183.Google Scholar
  243. Zagwijn, W., & Hager, H. (1987). Correlations of continental and marine Neogene deposits in the south-eastern Netherlands and the lower Rhine District. Mededelingen van de Werkgroep voor Tertiaire en Kwartaire Geologie, 24, 59–78.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Daniel J. Peppe
    • 1
    Email author
  • Aly Baumgartner
    • 1
  • Andrew Flynn
    • 1
  • Benjamin Blonder
    • 2
  1. 1.Terrestrial Paleoclimatology Research Group, Department of GeosciencesBaylor UniversityWacoUSA
  2. 2.School of Life Sciences, Arizona State UniversityTempeUSA

Personalised recommendations