Advertisement

Phytoliths in Paleoecology: Analytical Considerations, Current Use, and Future Directions

  • Caroline A. E. StrömbergEmail author
  • Regan E. Dunn
  • Camilla Crifò
  • Elisha B. Harris
Chapter
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Abstract

Phytoliths, microscopic plant silica bodies, are often preserved in modern and fossil soils and sediment, as well as in archaeological contexts. They record unique characteristics of past vegetation and, unlike palynomorphs and macrofossils, are commonly found in direct association with fossil vertebrates, providing vital paleoecological data. Within pre-Quaternary paleoecology, phytolith analysis has so far elucidated Cretaceous-Cenozoic grass evolution, vegetation change including the spread of grasslands, plant-animal co-evolution, and diets of extinct animals. Because deep-time phytolith analysis is a young field, many methodological aspects are not standardized, preventing comparisons among studies and calibration using published modern analogs. On the other hand, the plethora of novel approaches in recent literature points to the potential of phytolith-based paleoecology. Here, we review the present state of phytolith analysis, focusing on pre-Quaternary applications. We discuss the nature and known biases of the phytolith record, current methods, and examples of when phytoliths contributed substantially to knowledge of past ecosystems, and highlight important future avenues of research.

Keywords

Phytolith Paleoecology 

Notes

Acknowledgements

We thank Z. Song, D. Conley, and W. Clymans for fruitful discussions about silica in soil. This work was in part supported by the Biology Department, University of Washington, Seattle, and NSF awards EAR-1253713 and EAR-1349530 to C.A.E.S.

References

  1. Albert, R. M., & Bamford, M. K. (2012). Vegetation during UMBI and deposition of Tuff IF at Olduvai Gorge, Tanzania (ca. 1.8 Ma) based on phytoliths and plant remains. Journal of Human Evolution, 63, 342–350.Google Scholar
  2. Albert, R. M., Bamford, M. K., & Cabanes, D. (2006). Taphonomy of phytoliths and macroplants in different soils from Olduvai Gorge (Tanzania) and the application to Plio-Pleistocene palaeoanthropological samples. Quaternary International, 148, 78–94.Google Scholar
  3. Albert, R. M., Bamford, M. K., & Cabanes, D. (2009). Palaeoecological significance of palms at Olduvai Gorge, Tanzania, based on phytolith remains. Quaternary International, 193, 41–48.Google Scholar
  4. Albert, R. M., Bamford, M. K., & Esteban, I. (2015). Reconstruction of ancient palm vegetation landscapes using a phytolith approach. Quaternary International, 369, 51–66.Google Scholar
  5. Albert, R. M., & Cabanes, D. (2008). Fire in prehistory: an experimental approach to combustion processes and phytolith remains. Israel Journal of Earth Sciences, 56, 175–189.Google Scholar
  6. Albert, R. M., Esteban, I. (2016). 9. What early human populations ate: the use of phytoliths for identifying plant remains in the archaeological record at Olduvai. In K. Hardy & L. Kubiak-Martens (Eds.), Wild Harvest: Plants in the Hominin and Pre-Agrarian Human Worlds (pp. 171–190). Oxford, UK: Oxbow Books.Google Scholar
  7. Albert, R. M., Ruíz, J. A., & Sans, A. (2016). PhytCore ODB: a new tool to improve efficiency in the management and exchange of information on phytoliths. Journal of Archaeological Science, 68, 98–105.Google Scholar
  8. Albert, R. M., & Weiner, S. (2001). Study of phytoliths in prehistoric ash layers from Kebara and Tabun caves using a quantitative approach. In J. D. Meunier & F. Colin (Eds.), Phytoliths: Applications in Earth sciences and human history (pp. 251–266). Lisse: A. A. Balkema Publishers.Google Scholar
  9. Aleman, J., Leys, B., Apema, R., Bentaleb, I., Dubois, M. A., Lamba, B., et al. (2012). Reconstructing savanna tree cover from pollen, phytoliths and stable carbon isotopes. Journal of Vegetation Science, 23, 187–197.Google Scholar
  10. Aleman, J. C., Canal-Subitani, S., Favier, C., & Bremond, L. (2014). Influence of the local environment on lacustrine sedimentary phytolith records. Palaeogeography, Palaeoclimatology, Palaeoecology, 414, 273–283.Google Scholar
  11. Alexandre, A., Basile-Doelsch, I., Delhaye, T., Borshneck, D., Mazur, J., Reyerson, P., et al. (2015). New highlights of phytolith structure and occluded carbon location: 3-D X-ray microscopy and NanoSIMS results. Biogeosciences, 12, 863–873.Google Scholar
  12. Alexandre, A., Bouvet, M., & Abbadie, L. (2011a). The role of savannas in the terrestrial Si cycle: a case-study from Lamto, Ivory Coast. Global and Planetary Change, 78, 162–169.Google Scholar
  13. Alexandre, A., Crespin, J., Sylvestre, F., Sonzogni, C., & Hilbert, D. W. (2011b). The oxygen isotopic composition of phytoliths from tropical rainforest soils (Queensland, Australia): application of a new paleoenvironmental tool. Climate of the Past Discussions, 7, 1693–1735.Google Scholar
  14. Alexandre, A., Crespin, J., Sylvestre, F., Sonzogni, C., & Hilbert, D. W. (2012). The oxygen isotopic composition of phytolith assemblages from tropical rainforest soil tops (Queensland, Australia): validation of a new paleoenvironmental tool. Climate of the Past, 8, 307–324.Google Scholar
  15. Alexandre, A., Meunier, J.-D., Colin, F., & Koud, J.-M. (1997a). Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochimica et Cosmochimica Acta, 61, 677–682.Google Scholar
  16. Alexandre, A., Meunier, J.-D., Lezine, A.-M., Vincens, A., & Schwartz, D. (1997b). Phytoliths: indicators of grassland dynamics during the late Holocene in intertropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 136, 213–229.Google Scholar
  17. Alexandre, A., Meunier, J.-D., Mariotti, A., & Soubies, F. (1999). Late Holocene phytolith and carbon-isotope record from a Latosol at Salitre, South-Central Brazil. Quaternary Research, 51, 187–194.Google Scholar
  18. Aliscioni, S., Bell, H. L., Besnard, G., Christin, P. A., Columbus, J. T., Duvall, M. R., et al. (2012). New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytologist, 193, 304–312.Google Scholar
  19. An, X. (2016). Morphological characteristics of phytoliths from representative conifers in China. Palaeoworld, 25, 116–127.Google Scholar
  20. An, X., Lu, H., & Chu, G. (2015). Surface soil phytoliths as vegetation and altitude indicators: a study from the southern Himalaya. Scientific Reports, 5, 15523.Google Scholar
  21. Archibald, S. B., Morse, G. E., Greenwood, D. R., & Mathewes, R. W. (2014). Fossil palm beetles refine upland winter temperatures in the Early Eocene Climatic Optimum. Proceedings of the National Academy of Sciences, USA, 111, 8095–8100.Google Scholar
  22. Archibold, O. W. (1995). Ecology of world vegetation. London: Chapman & Hall.Google Scholar
  23. Armitage, P. L. (1975). The extraction and identification of opal phytoliths from the teeth of ungulates. Journal of Archaeological Science, 2, 187–197.Google Scholar
  24. Asevedo, L., Winck, G. R., Mothé, D., & Avilla, L. S. (2012). Ancient diet of the Pleistocene gomphothere Notiomastodon platensis (Mammalia, Proboscidea, Gomphotheriidae) from lowland mid-latitudes of South America: stereomicrowear and tooth calculus analyses combined. Quaternary International, 255, 42–52.Google Scholar
  25. Askin, R., & Raine, J. (2000). Oligocene and Early Miocene terrestrial palynology of the Cape Roberts Drillhole CRP-2/2A, Victoria Land Basin, Antarctica. Terra Antartica, 7, 493–501.Google Scholar
  26. Asner, G. P., Scurlock, J. M., & Hicke, J. (2003). Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecology and Biogeography, 12, 191–205.Google Scholar
  27. Augustin, C. H. R. R., Coe, H. H. G., Chueng, K. F., & Gomes, J. G. (2015). Analysis of geomorphic dynamics in ancient quartzite landscape using phytolith and carbon isotopes, Espinhaço Mountain Range, Minas Gerais, Brazil. Géomorphologie, 4, 355–376.‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬Google Scholar
  28. Baker, G. (1960). Fossil opal-phytoliths. Micropaleontology, 6, 79–85.Google Scholar
  29. Baker, G. J. (1979). A study of dental disease in the horse. Glasgow: University of Glasgow.Google Scholar
  30. Ball, T. B., Gardner, J. S., & Anderson, N. (1999). Identifying inflorescence phytoliths from selected species of wheat (Triticum monococcum, T. dicoccon, T. dicoccoides, and T. aestivum) and barley (Hordeum vulgare and H. spontaneum) (Graminae). American Journal of Botany, 86, 1615–1623.Google Scholar
  31. Ball, T. B., Gardner, J. S., & Brotherson, J. D. (1996). Identifying phytoliths produced by the inflorescence bracts of three species of wheat (Triticum monococcum L., T. dicoccon Schrank., and T. aestivum L.) using computer-assisted image and statistical analyses. Journal of Archaeological Science, 23, 619–632.Google Scholar
  32. Bamford, M., Neumann, F., Pereira, L., Scott, L., Dirks, P., & Berger, L. (2010). Botanical remains from a coprolite from the Pleistocene hominin site of Malapa, Sterkfontein Valley, South Africa. Palaeontologia Africana, 45, 23–28.Google Scholar
  33. Bamford, M. K., Albert, R. M., & Cabanes, D. (2006). Plio-Pleistocene macroplant fossil remains and phytoliths from Lowermost Bed II in the eastern palaeolake margin of Olduvai Gorge, Tanzania. Quaternary International, 148, 95–112.Google Scholar
  34. Bamford, M. K., Stanistreet, I. G., Stollhofen, H., & Albert, R. M. (2008). Late Pliocene grassland from Olduvai Gorge, Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology, 257, 280–293.Google Scholar
  35. Barboni, D. (2014). Vegetation of Northern Tanzania during the Plio-Pleistocene: a synthesis of the paleobotanical evidences from Laetoli, Olduvai, and Peninj hominin sites. Quaternary International, 322, 264–276.Google Scholar
  36. Barboni, D., Ashley, G. M., Dominguez-Rodrigo, M., Bunn, H. T., Mabulla, A. Z. P., & Baquedano, E. (2010). Phytoliths infer locally dense and heterogeneous paleovegetation at FLK North and surrounding localities during upper Bed I time, Olduvai Gorge, Tanzania. Quaternary Research, 74, 344–354.Google Scholar
  37. Barboni, D., Bonnefille, R., Alexandre, A., & Meunier, J.-D. (1999). Phytoliths as paleoenvironmental indicators, West Side Middle Awash Valley, Ethiopia. Palaeogeography, Palaeoclimatology, Palaeoecology, 152, 87–100.Google Scholar
  38. Barboni, D., & Bremond, L. (2009). Phytoliths of East African grasses: an assessment of their environmental and taxonomic significance based on floristic data. Review of Palaeobotany and Palynology, 158, 29–41.Google Scholar
  39. Barboni, D., Bremond, L., & Bonnefille, R. (2007). Comparative study of modern phytolith assemblages from inter-tropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 246, 454–470.Google Scholar
  40. Bartoli, F. (1985). Crystallochemistry and surface properties of biogenic opal. Journal of Soil Science, 36, 335–350.Google Scholar
  41. Bartoli, F., & Wilding, L. P. (1980). Dissolution of biogenic opal as a function of its physical and chemical properties. Proceedings of the Soil Science Society of America, 44, 873–878.Google Scholar
  42. Behrensmeyer, A. K. & Hook, R. W. (1992). Paleoenvironmental contexts and taphonomic models. In A. K. Behrensmeyer, J. D. Damuth, W. A. DiMichele, R. Potts, H.-D. Sues & S. L. Wing (Eds.), Terrestrial ecosystems through time. Evolutionary paleoecology of terrestrial plants and animals (pp. 15–136). Chicago: The University of Chicago Press.Google Scholar
  43. Bellosi, E. (2010). Loessic and fluvial sedimentation in Sarmiento Formation pyroclastics, middle Cenozoic of Central Patagonia. In R. H. Madden, A. A. Carlini, M. G. Vucetich & R. F. Kay (Eds.), The paleontology of Gran Barranca (pp. 278–292). Cambridge: Cambridge University Press.Google Scholar
  44. Bellosi, E. & González, M. G. (2010). Paleosols of the middle Cenozoic Sarmiento Formation, Central Patagonia. In R. H. Madden, A. A. Carlini, M. G. Vucetich & R. F. Kay (Eds.), The paleontology of Gran Barranca (pp. 293–305). Cambridge: Cambridge University PressGoogle Scholar
  45. Bellosi, E. S., & Krause, J. M. (2014). Onset of the Middle Eocene global cooling and expansion of open-vegetation habitats in central Patagonia. Andean Geology, 41, 29–48.Google Scholar
  46. Bennett, P. C. (1991). Quartz dissolution in organic-rich aqueous systems. Geochimica et Cosmochimica Acta, 55, 1781–1797.Google Scholar
  47. Bertoldi de Pomar, H. (1971). Ensayo de clasificación morfológica de los silicofitolitos. Ameghiniana, 8, 317–328.Google Scholar
  48. Birks, H. J. B., & Birks, H. H. (1980). Quaternary palaeoecology. London: Edward Arnold Ltd.Google Scholar
  49. Biswas, O., Ghosh, R., Paruya, D. K., Mukherjee, B., Thapa, K. K., & Bera, S. (2016). Can grass phytoliths and indices be relied on during vegetation and climate interpretations in the eastern Himalayas? Studies from Darjeeling and Arunachal Pradesh, India. Quaternary Science Reviews, 134, 114–132.Google Scholar
  50. Blecker, S. W., McCulley, R. L., Chadwick, O. A., & Kelly, E. F. (2006). Biologic cycling of silica across a grassland bioclimosequence. Global Biogeochemical Cycles, 20, GB3023.Google Scholar
  51. Blecker, S. W., Yonker, C. M., Olson, C. G., & Kelly, E. F. (1997). Paleopedologic and geomorphic evidence for Holocene climate variation, Shortgrass Steppe, Colorado, USA. Geoderma, 76, 113–130.Google Scholar
  52. Blinnikov, M. S. (2005). Phytoliths in plants and soils of the interior Pacific Northwest, USA. Review of Palaeobotany and Palynology, 135, 71–98.Google Scholar
  53. Blinnikov, M. S. (2016). Phytolith gallery. http://web.stcloudstate.edu/msblinnikov/phd/phyt.html.
  54. Blinnikov, M. S., Bagent, C. M., & Reyerson, P. E. (2013). Phytolith assemblages and opal concentrations from modern soils differentiate temperate grasslands of controlled composition on experimental plots at Cedar Creek, Minnesota. Quaternary International, 287, 101–113.Google Scholar
  55. Blinnikov, M. S., Busacca, A., & Whitlock, C. (2002). Reconstruction of the Late Pleistocene grassland of the Columbia basin, Washington, USA, based on phytolith records in loess. Palaeogeography, Palaeoclimatology, Palaeoecology, 177, 77–101.Google Scholar
  56. Blueweiss, L., Fox, H., Kudzma, V., Nakashima, D., Peters, R., & Sams, S. (1978). Relationships between body size and some life history parameters. Oecologia, 37, 257–272.Google Scholar
  57. Borrelli, N., Alvarez, M. F., Osterrieth, M. L., & Marcovecchio, J. E. (2010). Silica content in soil solution and its relation with phytolith weathering and silica biogeochemical cycle in typical Argiudolls of the Pampean Plain, Argentina—A preliminary study. Journal of Soils and Sediments, 10, 983–994.Google Scholar
  58. Borrelli, N., Fernández Honaine, M., Altamirano, S. M., & Osterrieth, M. (2011). Calcium and silica biomineralizations in leaves of eleven aquatic species of the Pampean Plain, Argentina. Aquatic Botany, 94, 29–36.Google Scholar
  59. Borrelli, N., Osterrieth, M., & Marcovecchio, J. (2008). Interrelations of vegetal cover, silicophytolith content and pedogenesis of typical Argiudolls of the Pampean Plain, Argentina. Catena, 75, 146–153.Google Scholar
  60. Bouchenak-Khelladi, Y., Verboom, G. A., Hodkinson, T. R., Salamin, N., Francois, O., Chonghaile, G. N., et al. (2009). The origins and diversification of C4 grasses and savanna adapted ungulates. Global Change Biology, 15, 2397–2417.Google Scholar
  61. Bouchenak-Khelladi, Y., Verboom, G. A., Savolainen, V., & Hodkinson, T. R. (2010). Biogeography of the grasses (Poaceae): a phylogenetic approach to reveal evolutionary history in geographical space and geological time. Botanical Journal of the Linnean Society, 162, 543–557.Google Scholar
  62. Bouchenak-Khelladi, Y., Muasya, A. M., & Linder, H. P. (2014). A revised evolutionary history of Poales: origins and diversification. Botanical Journal of the Linnean Society, 175, 4–16.Google Scholar
  63. Bowdery, D., Hart, D. M., Lentfer, C. J., & Wallis, L. A. (2001). A universal phytolith key. In J. D. Meunier & F. Colin (Eds.), Phytoliths: Applications in Earth sciences and human history (pp. 267–278). Lisse: A. A. Balkema Publishers.Google Scholar
  64. Boyadjian, C. H. C., Eggers, S., & Reinhard, K. (2007). Dental wash: a problematic method for extracting microfossils from teeth. Journal of Archaeological Science, 34, 1622–1628.Google Scholar
  65. Boyd, M. (2002). Identification of anthropogenic burning in the paleoecological record of the northern prairies: a new approach. Annals of the Association of American Geographers, 92, 471–487.Google Scholar
  66. Boyd, W. E., Lentfer, C. J., & Torrence, R. (1998). Phytolith analysis for a wet tropics environment: methodological issues and implications for the archaeology of Garua Island, West New Britain, Papa New Guinea. Palynology, 22, 213–228.Google Scholar
  67. Bozarth, S., & Hofman, J. (1998). Phytolith analysis of bison teeth calculus and impacta from sites in Kansas and Oklahoma. Current Research in the Pleistocene, 15, 95–96.Google Scholar
  68. Bozarth, S. R. (1985). Distinctive phytoliths from various dicot species. Phytolitharien Newsletter, 3, 7–8.Google Scholar
  69. Bozarth, S. R. (1987). Diagnostic opal morphotypes from rinds of selected Cucurbita species. American Antiquity, 52, 607–615.Google Scholar
  70. Bozarth, S. R. (1990). Diagnostic opal phytoliths from pods of selected varieties of common beans (Phaseolus vulgaris). American Antiquity, 55, 98–104.Google Scholar
  71. Bozarth, S. R. (1992). Classification of opal phytoliths formed in selected dicotyledons native to the Great Plains. In G. J. Rapp & S. C. Mulholland (Eds.), Phytolith systematics. Emerging issues, vol 1. Advances in Archaeological and Museum Science (pp. 193–214). New York: Plenum Press.Google Scholar
  72. Bozarth, S. R. (1993). Biosilicate assemblages of boreal forests and aspen parklands. In D. M. Pearsall & D. R. Piperno (Eds.), Current research in phytolith analysis: Applications in archaeology and paleoecology, vol 10. MASCA Research Papers in Science and Archaeology (pp. 95–105). Philadelphia: University Museum of Archaeology and Anthropology, University of Pennsylvania.Google Scholar
  73. Brea, M., Zucol, A., & Iglesias, A. (2012). Fossil plant studies from late Early Miocene of the Santa Cruz Formation: paleoecology and paleoclimatology at the passive margin of Patagonia, Argentina. In S. Vizcaíno, R. F. Kay & M. S. Bargo (Eds.), Early Miocene paleobiology in Patagonia (pp. 104–128). Cambridge: Cambridge University Press.Google Scholar
  74. Bremer, K. (2002). Gondwanan evolution of the grass alliance of families (Poales). Evolution, 56, 1374–1387.Google Scholar
  75. Bremond, L., Alexandre, A., Véla, E., & Guiot, J. (2004). Advantages and disadvantages of phytolith analysis for the reconstruction of Mediterranean vegetation: an assessment based on modern phytolith, pollen and botanical data (Luberon, France). Review of Palaeobotany and Palynology, 129, 213–228.Google Scholar
  76. Bremond, L., Alexandre, A., Hély, C., & Guiot, J. (2005a). A phytolith index as a proxy of tree cover density in tropical areas: calibration with Leaf Area Index along a forest–savanna transect in southeastern Cameroon. Global and Planetary Change, 45, 277–293.Google Scholar
  77. Bremond, L., Alexandre, A., Peyron, O., & Guiot, J. (2005b). Grass water stress estimated from phytoliths in West Africa. Journal of Biogeography, 32, 311–327.Google Scholar
  78. Bremond, L., Alexandre, A., Peyron, O., & Guiot, J. (2008a). Definition of grassland biomes from phytoliths in West Africa. Journal of Biogeography, 35, 2039–2048.Google Scholar
  79. Bremond, L., Alexandre, A., Wooller, M. J., Hely, C., Williamson, D., Schafer, P. A., et al. (2008b). Phytolith indices as proxies of grass subfamilies on East African tropical mountains. Global and Planetary Change, 61, 209–224.Google Scholar
  80. Brophy, J. K., de Ruiter, D. J., Fortelius, M., Bamford, M., & Berger, L. R. (2016). Pleistocene Bovidae (Mammalia) from Malapa, Gauteng Province, South Africa. Palaeontologia Electronica, 19, 1–22.Google Scholar
  81. Brown, D. A. (1984). Prospects and limits of a phytolith key for grasses in the Central United States. Journal of Archaeological Science, 11, 345–368.Google Scholar
  82. Buján, E. (2013). Elemental composition of phytoliths in modern plants (Ericaceae). Quaternary International, 287, 114–120.Google Scholar
  83. Cabanes, D., Weiner, S., & Shahack-Gross, R. (2011). Stability of phytoliths in the archaeological record: a dissolution study of modern and fossil phytoliths. Journal of Archaeological Science, 38, 2480–2490.Google Scholar
  84. Calderón, C. E., & Soderstrom, T. R. (1980). The genera of Bambusoideae (Poaceae) of the American conitinent: keys and comments. Smithsonian Contributions to Botany, 44, 1–27.Google Scholar
  85. Calegari, M. R., Madella, M., Vidal-Torrado, P., Pessenda, L. C. R., & Marques, F. A. (2013). Combining phytoliths and δ13C matter in Holocene palaeoenvironmental studies of tropical soils: an example of an Oxisol in Brazil. Quaternary International, 287, 47–55.Google Scholar
  86. Campbell, C. S. & Kellogg, E. A. (1987). Sister group relationships of the Poaceae. In T. R. Soderstrom, K. W. Hilu, C. S. Campbell & M. E. Barkworth (Eds.), Grass systematics and evolution (pp. 217–224). Washington, D. C.: Smithsonian Institution Press.Google Scholar
  87. Carnelli, A. L., Madella, M., & Theurillat, J.-P. (2001). Biogenic silica production in selected Alpine plant species and plant communities. Annals of Botany, 87, 425–434.Google Scholar
  88. Carnelli, A. L., Madella, M., Theurillat, J.-P., & Ammann, B. (2002). Aluminum in the opal silica reticule of phytoliths: a new tool in palaeoecological studies. American Journal of Botany, 89, 346–351.Google Scholar
  89. Carnelli, A. L., Theurillat, J.-P., & Madella, M. (2004). Phytolith types and type-frequencies in subalpine–alpine plant species of the European Alps. Review of Palaeobotany and Palynology, 129, 39–65.Google Scholar
  90. Cerling, T. E. (1992). Development of grasslands and savannas in East Africa during the Neogene. Palaeogeography, Palaeoclimatology, Palaeoecology, 97, 241–247.Google Scholar
  91. Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., et al. (1997). Global vegetation change through the Miocene/Pliocene boundary. Nature, 389, 153–158.Google Scholar
  92. Cerling, T. E., Levin, N. E., Quade, J., Wynn, J. G., Fox, D. L., Kingston, J. D., et al. (2010). Comment on the paleoenvironment of Ardipithecus ramidus. Science, 328, 1105.Google Scholar
  93. Chen, S. T., & Smith, S. Y. (2013). Phytolith variability in Zingiberales: a tool for the reconstruction of past tropical vegetation. Palaeogeography, Palaeoclimatology, Palaeoecology, 370, 1–12.Google Scholar
  94. Chen, S. T., Smith, S. Y., Sheldon, N. D., & Strömberg, C. A. E. (2015). Regional-scale variability in the spread of grasslands in the late Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 437, 42–52.Google Scholar
  95. Christin, P.-A., Spriggs, E., Osborne, C. P., Strömberg, C. A. E., Salamin, N., & Edwards, E. J. (2014). Molecular dating, evolutionary rates, and the age of the grasses. Systematic Biology, 63, 153–165.Google Scholar
  96. Ciochon, R. L., Piperno, D. R., & Thompson, R. G. (1990). Opal phytoliths found on the teeth of the extinct ape Gigantopithecus blacki: implications for paleodietary studies. Proceedings of the National Academy of Sciences, USA, 87, 8120–8124.Google Scholar
  97. Clarke, J. (2003). The occurrence and significance of biogenic opal in the regolith. Earth Science Reviews, 60, 175–194.Google Scholar
  98. Coe, H. H., Macario, K., Gomes, J. G., Chueng, K. F., Oliveira, F., Gomes, P. R., et al. (2014). Understanding Holocene variations in the vegetation of Sao Joao River basin, southeastern coast of Brazil, using phytolith and carbon isotopic analyses. Palaeogeography, Palaeoclimatology, Palaeoecology, 415, 59–68.Google Scholar
  99. Coe, H. H. G., Alexandre, A., Carvalho, C. N., Santos, G. M., da Silva, A. S., Sousa, L. O. F., et al. (2013). Changes in Holocene tree cover density in Cabo Frio (Rio de Janeiro, Brazil): evidence from soil phytolith assemblages. Quaternary International, 287, 63–72.Google Scholar
  100. Collura, L. V., & Neumann, K. (2017). Wood and bark phytoliths of West African woody plants. Quaternary International, 434, 142–159.Google Scholar
  101. Cooke, J., & Leishman, M. R. (2011). Is plant ecology more siliceous than we realise? Trends in Plant Science, 16, 61–68.Google Scholar
  102. Cordova, C. E. (2013). C3 Poaceae and Restionaceae phytoliths as potential proxies for reconstructing winter rainfall in South Africa. Quaternary International, 287, 121–140.Google Scholar
  103. Cordova, C. E., Johnson, W. C., Mandel, R. D., & Palmer, M. W. (2011). Late Quaternary environmental change inferred from phytoliths and other soil-related proxies: case studies from the central and southern Great Plains, USA. Catena, 85, 87–108.Google Scholar
  104. Cordova, C. E., & Scott, L. (2010). The potential of Poaceae, Cyperaceae, and Restionaceae phytoliths to reflect past environmental conditions in South Africa. In J. Runge (Ed.), African palaeoenviornments and geomorphic landscape evolution (pp. 107–133). Boca Raton, FL: CRC Press.Google Scholar
  105. Cornelis, J. T., Delvaux, B., Georg, R. B., Lucas, Y., Ranger, J., & Opfergelt, S. (2011). Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review. Biogeosciences, 8, 89–112.Google Scholar
  106. Cotton, J. M., Hyland, E. G., & Sheldon, N. D. (2014). Multi-proxy evidence for tectonic control on the expansion of C4 grasses in northwest Argentina. Earth and Planetary Science Letters, 395, 41–50.Google Scholar
  107. Cotton, J. M., Sheldon, N. D., & Strömberg, C. A. E. (2012). High resolution isotopic record of C4 photosynthesis of a Miocene grassland. Palaeogeography, Palaeoclimatology, Palaeoecology, 337–338, 88–98.Google Scholar
  108. Couvreur, T. L. P., & Baker, W. J. (2013). Tropical rain forest evolution: palms as a model group. BMC Biology, 11, 48.Google Scholar
  109. Crifò, C., & Strömberg, C. A. E. (2016). Phytoliths in paleoecology: a tool for reconstructing habitat structure, and heterogeneity. Geologic Society of America Abstracts with Programs, 48.Google Scholar
  110. Currie, H. A., & Perry, C. C. (2007). Silica in plants: biological, biochemical and chemical studies. Annals of Botany, 100, 1383–1389.Google Scholar
  111. da Costa, F. G., Souza, P. C., Klein, D. E., & Bove, C. P. (2016). Application of acetolysis in phytoliths extraction. Review of Palaeobotany and Palynology, 228, 93–97.Google Scholar
  112. Dahlgren, R. M. T., Clifford, H. T., & Yeo, P. F. (1985). The families of the monocotyledons. Structure, evolution, and taxonomy. New York: Springer.Google Scholar
  113. Das, S., Ghosh, P., Paruya, D. K., Yao, Y.-F., & Li, C.-S. (2013a). Phytolith spectra in respiratory aerial roots of some mangrove plants of the Indian Sunderbans and its efficacy in ancient deltaic environment reconstruction. Quaternary International, 325, 179–196.Google Scholar
  114. Das, S., Ghosh, R., & Bera, S. (2013b). Application of non-grass phytoliths in reconstructing deltaic environments: a study from the Indian Sunderbans. Palaeogeography, Palaeoclimatology, Palaeoecology, 376, 48–65.Google Scholar
  115. Delhon, C., Alexandre, A., Berger, J.-F., Thiébault, S., Brochier, J.-L., & Meunier, J.-D. (2003). Phytolith assemblages as a promising tool for reconstructing Mediterranean Holocene vegetation. Quaternary Research, 59, 48–60.Google Scholar
  116. Delhon, C., Martin, L., Argant, J., & Thiebault, S. (2008). Shepherds and plants in the Alps: multi-proxy archaeobotanical analysis of neolithic dung from “La Grande Rivoire”(Isère, France). Journal of Archaeological Science, 35, 2937–2952.Google Scholar
  117. Dickau, R., Whitney, B. S., Iriarte, J., Mayle, F. E., Soto, J. D., Metcalfe, P., et al. (2013). Differentiation of neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions. Review of Palaeobotany and Palynology, 193, 15–37.Google Scholar
  118. Diester-Haass, L., Schrader, H. J., & Thiede, J. (1973). Sedimentological and paleoclimatological investigations of two pelagic ooze cores off Cape Barbas, North-West Africa. “Meteor” Forschungsergebnisse, C16, 19–66.Google Scholar
  119. Dillhoff, R. M., Dillhoff, T. A., Jijina, A. P., & Strömberg, C. A. E. (2014). The Vasa Park flora, King County, Washington, USA – a window into the late Miocene of the Pacific Northwest. In W. D. Stevens, O. M. Montiel & P. H. Raven (Eds.), Paleobotany and biogrography, a festschrift for Alan Graham in his 80th year (pp. 64–97). St. Louis: Missouri Botanical Garden Press.Google Scholar
  120. Dinan, E. H. & Rowlett, R. M. (1993). Vegetational changes at the Shriver paleo-Indian site, N. W. Missouri: Phytolith analysis as an aid in environmental reconstruction. In D. M. Pearsall & D. R. Piperno (Eds.), Current research in phytolith analysis: Applications in archaeology and paleoecology, vol 10. MASCA Research Papers in Science and Archaeology (pp. 73–82). Philadelphia: University Museum of Archaeology and Anthropology, University of Pennsylvania.Google Scholar
  121. Dixon, P., Tremaine, W., Pickles, K., Kuhns, L., Hawe, C., McCann, J., et al. (1999). Equine dental disease Part 1: a long-term study of 400 cases: disorders of incisor, canine and first premolar teeth. Equine Veterinary Journal, 31, 369–377.Google Scholar
  122. Donohue, J. A. & Dinan, E. H. (1993). A geoarchaeological analysis of phytolith data from the Bear Creek site, Cedar County, Missouri. In D. M. Pearsall & D. R. Piperno (Eds.), Current research in phytolith analysis: Applications in archaeology and paleoecology, vol 10. MASCA Research Papers in Science and Archaeology (pp. 83–94). Philadelphia: University Museum of Archaeology and Anthropology, University of Pennsylvania.Google Scholar
  123. Drees, R. L., Wilding, L. P., Smeck, N. E., & Senkayi, A. L. (1989). Silica in soils: Quartz and disordered silica polymorphs. In J. B. Dixon & S. B. Weed (Eds.), Minerals in Soil Environments (pp. 913–974). Madison: Soil Science Society of America.Google Scholar
  124. Dugas, D. P., & Retallack, G. J. (1993). Middle Miocene fossil grasses from Fort Ternan, Kenya. Journal of Paleontology, 67, 113–128.Google Scholar
  125. Dumitriča, P. (1973). Phytolitharia. In A. G. Kaneps (Ed.), Initial reports of the deep sea drilling project, vol XIII. Part 2 (pp. 940–943). Washington, D. C.: U. S. Printing Office.Google Scholar
  126. Dunn, R. E., Strömberg, C. A. E., & Le, T.-Y. (2015a). Light environment and epidermal cell morphology in grasses. International Journal of Plant Sciences, 176, 832–847.Google Scholar
  127. Dunn, R. E., Strömberg, C. A. E., Madden, R. H., Kohn, M. J., & Carlini, A. A. (2015b). Linked canopy, climate and faunal evolution in the Cenozoic of Patagonia. Science, 347, 258–261.Google Scholar
  128. Edwards, E. J., Osborne, C. P., Strömberg, C. A. E., Smith, S. A., & C4 Grasses Consortium (2010). The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science, 328, 587–591Google Scholar
  129. Edwards, E. J., & Smith, S. A. (2010). Phylogenetic analyses reveal the shady history of C4 grasses. Proceedings of the National Academy of Sciences, USA, 107, 2532–2537.Google Scholar
  130. Ehrenberg, C. G. (1847). Passatstaub und Blutregen: Ein grosses organisches unsichtbares Wirken und Leben in der Atmosphäre. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, 1847, 269–460.Google Scholar
  131. Ehrlich, H., Demadis, K. D., Pokrovsky, O. S., & Koutsoukos, P. G. (2010). Modern views on desilicification: biosilica and abiotic silica dissolution in natural and artificial environments. Chemical Review, 110, 4656–4689.Google Scholar
  132. Eichhorn, B., Neumann, K., & Garnier, A. (2010). Seed phytoliths in West African Commelinaceae and their potential for palaeoecological studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 298, 300–310.Google Scholar
  133. Elbaum, R., Melamed-Bessudo, C., Tuross, N., Levy, A. A., & Weiner, S. (2009). New methods to isolate organic materials from silicified phytoliths reveal fragmented glycoproteins but no DNA. Quaternary International, 193, 11–19.Google Scholar
  134. Elbaum, R., Weiner, S., Albert, R. M., & Elbaum, M. (2003). Detection of burning of plant materials in the archaeological record by changes in the refractive indices of siliceous phytoliths. Journal of Archaeological Science, 30, 217–226.Google Scholar
  135. Ellis, B., & Johnson, K. R. (2013). Comparison of leaf samples from mapped tropical and temperate forests: implications for interpretations of the diversity of fossil assemblages. PALAIOS, 28, 163–177.Google Scholar
  136. Eronen, J. T., Puolamaki, K., Liu, L., Lintulaakso, K., Damuth, J., Janis, C., et al. (2010). Precipitation and large herbivorous mammals I: estimates from present-day communities. Evolutionary Ecology Research, 12, 217–233.Google Scholar
  137. Esau, K. (1965). Plant anatomy (2nd ed.). New York: Wiley.Google Scholar
  138. Esteban, I., De Vynck, J. C., Singels, E., Vlok, J., Marean, C. W., Cowling, R. M., et al. (2017). Modern soil phytolith assemblages used as proxies for Paleoscape reconstruction on the south coast of South Africa. Quaternary International, 434, 160–179.Google Scholar
  139. Evett, R. R., & Cuthrell, R. Q. (2016). A conceptual framework for a computer-assisted, morphometric-based phytolith analysis and classification system. Journal of Archaeological Science, 68, 70–78.Google Scholar
  140. Evett, R. R., & Cuthrell, R. Q. (2017). Testing phytolith analysis approaches to estimate the prehistoric anthropogenic burning regime on the central California coast. Quaternary International, 434, 78–90.Google Scholar
  141. Fahmy, A. G. (2008). Diversity of lobate phytoliths in grass leaves from the Sahel region, West Tropical Africa: tribe Paniceae. Plant Systematics and Evolution, 270, 1–23.Google Scholar
  142. Faisal, S., Callis, K. L., Slot, M., & Kitajima, K. (2012). Transpiration-dependent passive silica accumulation in cucumber (Cucumis sativus) under varying soil silicon availability. Botany, 90, 1058–1064.Google Scholar
  143. Fauteux, F., Remus-Borel, W., Menzies, J. G., & Belanger, R. R. (2005). Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters, 249, 1–6.Google Scholar
  144. Feakins, S. J., Levin, N. E., Liddy, H. M., Sieracki, A., Eglinton, T. I., & Bonnefille, R. (2013). Northeast African vegetation change over 12 my. Geology, 41, 295–298.Google Scholar
  145. Fearn, M. L. (1998). Phytoliths in sediment as indicators of grass pollen source. Review of Palaeobotany and Palynology, 103, 75–81.Google Scholar
  146. Fein, J. B. (2009). Experimental and field constraints on the role of silica–organic complexation and silica–microbial interactions during sediment diagenesis. In R. H. Worden & M. Sadoon (Eds.), Quartz Cementation in Sandstones (pp. 119–127). Oxford: Blackwell Publishing Ltd.Google Scholar
  147. Fernandez Honaine, M., Zucol, A. F., & Osterrieth, M. L. (2006). Phytolith assemblages and systematic associations in grassland species of the south-eastern Pampean plains, Argentina. Annals of Botany, 98, 1155–1165.Google Scholar
  148. Fernández Pepi, M. G., Zucol, A. F., & Arriaga, M. O. (2012). Comparative phytolith analysis of Festuca (Pooideae: Poaceae) species native to Tierra del Fuego, Argentina. Botany, 90, 1113–1124.Google Scholar
  149. Fishkis, O., Ingwersen, J., Lamers, M., Denysenko, D., & Streck, T. (2010a). Phytolith transport in soil: a field study using fluorescent labelling. Geoderma, 157, 27–36.Google Scholar
  150. Fishkis, O., Ingwersen, J., Lamers, M., Denysenko, D., & Streck, T. (2010b). Phytolith transport in soil: a laboratory study on intact soil cores. European Journal of Soil Science, 61, 445–455.Google Scholar
  151. Fishkis, O., Ingwersen, J., & Streck, T. (2009). Phytolith transport in sandy sediment: experiments and modeling. Geoderma, 151, 168–178.Google Scholar
  152. Folger, D. (1970). Wind transport of land-derived mineral, biogenic, and industrial matter over the North Atlantic. Deep Sea Research and Oceanographic Abstracts, 2, 337.Google Scholar
  153. Folger, D., Burckle, L., & Heezen, B. (1967). Opal phytoliths in a North Atlantic dust fall. Science, 155, 1243–1244.Google Scholar
  154. Fox, C. L., Juan, J., & Albert, R. M. (1996). Phytolith analysis on dental calculus, enamel surface, and burial soil: information about diet and paleoenvironment. American Journal of Physical Anthropology, 101, 101–113.Google Scholar
  155. Fox, D. L., Honey, J. G., Martin, R. A., & Pelaez-Campomanes, P. (2012a). Pedogenic carbonate stable isotope record of environmental change during the Neogene in the southern Great Plains, southwest Kansas, USA: Carbon isotopes and the evolution of C4-dominated grasslands. Geological Society of America Bulletin, 124, 444–462.Google Scholar
  156. Fox, D. L., Honey, J. G., Martin, R. A., & Pelaez-Campomanes, P. (2012b). Pedogenic carbonate stable isotope record of environmental change during the Neogene in the southern Great Plains, southwest Kansas, USA: Oxygen isotopes and paleoclimate during the evolution of C4-dominated grasslands. Geological Society of America Bulletin, 124, 431–443.Google Scholar
  157. Fraysse, F., Pokrovsky, O. S., & Meunier, J.-D. (2010). Experimental study of terrestrial plant litter interaction with aqueous solutions. Geochimica et Coscmochimica Acta, 74, 70–84.Google Scholar
  158. Fraysse, F., Pokrovsky, O. S., Schott, J., & Meunier, J.-D. (2006). Surface properties, solubility and dissolution kinetics of bamboo phytoliths. Geochimica et Coscmochimica Acta, 70, 1939–1951.Google Scholar
  159. Fraysse, F., Pokrovsky, O. S., Schott, J., & Meunier, J.-D. (2009). Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chemical Geology, 258, 197–206.Google Scholar
  160. Fredlund, G. G. (1986). Problems in the simultaneous extraction of pollen and phytoliths from clastic sediments. In I. Rovner (Ed.), Plant opal phytolith analysis in archaeology and paleoecology. Proceedings of the 1984 Phytolith Research Workshop, vol 1. Occasional Papers of the Phytolitharien (pp. 102–111). Raleigh: North Carolina State University.Google Scholar
  161. Fredlund, G. G., & Tieszen, L. L. (1994). Modern phytolith assemblages from the North American Great Plains. Journal of Biogeography, 21, 321–335.Google Scholar
  162. Fredlund, G. G., & Tieszen, L. L. (1997a). Calibrating grass phytolith assemblages in climatic terms: application to late Pleistocene assemblages from Kansas and Nebraska. Palaeogeography, Palaeoclimatology, Palaeoecology, 136, 199–211.Google Scholar
  163. Fredlund, G. G., & Tieszen, L. L. (1997b). Phytolith and carbon evidence for Late Quaternary vegetation and climate change in the Southern Black Hills, South Dakota. Quaternary Research, 47, 206–217.Google Scholar
  164. Gallaher, T. J., Senske, A., Marvet, C., Akbar, S., Wong, S., Hsu, T., Jessett, K., Klahs, P. C., Clark, L. G., & Strömberg, C. A. E. (2017). 3D digitization of grass silica short cell phytoliths (GSSCP’s): a digital reference collection to improve their utility for the study of grasses and grassland evolution. Geological Society of America Abstracts with Programs 49, 261.Google Scholar
  165. Gallego, L., & Distel, R. A. (2004). Phytolith assemblages in grasses native to Central Argentina. Annals of Botany, 94, 865–874.Google Scholar
  166. Gallego, L., Distel, R. A., Camina, R., & Iglesias, R. M. R. (2004). Soil phytoliths as evidence for species replacement in grazed rangelands of central Argentina. Ecography, 27, 725–732.Google Scholar
  167. Garnier, A., Neumann, K., Eichhorn, B., & Lespez, L. (2012). Phytolith taphonomy in the middle- to late-Holocene fluvial sediments of Ounjougou (Mali, West Africa). Holocene, 23, 416–431.Google Scholar
  168. Ge, Y., Jie, D. M., Sun, Y. L., & Liu, H. M. (2011). Phytoliths in woody plants from the northern slope of the Changbai Mountain (Northeast China), and their implication. Plant Systematics and Evolution, 292, 55–62.Google Scholar
  169. Geis, J. W. (1973). Biogenic silica in selected species of deciduous angiosperms. Soil Science, 116, 113–130.Google Scholar
  170. George, W. O. (1924). The relation of the physical properties of natural glasses to their chemical composition. The Journal of Geology, 32, 353–372.Google Scholar
  171. Gérard, F., Mayer, K. U., Hodson, M. J., & Ranger, J. (2008). Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem. Geochimica et Cosmochimica Acta, 72, 741–758.Google Scholar
  172. Ghosh, P., Bhattacharya, S. K., Sahni, A., Kar, R. K., Mohabey, D. M., & Ambwani, K. (2003). Dinosaur coprolites from the Late Cretaceous (Maastrichtian) Lameta Formation of India: isotopic and other markers suggesting a C3 plant diet. Cretaceous Research, 24, 743–750.Google Scholar
  173. Ghosh, R., Gupta, S., Bera, S., Jiang, H-e, Li, X., & Li, C.-S. (2008). Ovi-caprid dung as an indicator of paleovegetation and paleoclimate in northwestern China. Quaternary Research, 70, 149–157.Google Scholar
  174. Givnish, T. (1988). Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology, 15, 63–92.Google Scholar
  175. Gobetz, K., & Bozarth, S. (2000). Diet and paleoecology of Columbian mammoth (Mammuthus columbi) determined from phytoliths and diatoms in teeth. Current Research in the Pleistocene, 17, 120–122.Google Scholar
  176. Gobetz, K. E., & Bozarth, S. R. (2001). Implications for Late Pleistocene mastodon diet from opal phytoliths in tooth calculus. Quaternary Research, 55, 115–122.Google Scholar
  177. Gol’eva, A. A. (1997). Content and distribution of phytoliths in the main types of soils in eastern Europe. In A. Pinilla, J. Juan-Tresserras & M. J. Machado (Eds.), The state of the art of phytoliths in soils and plants, vol 4. Monografías del Centro de Ciencias Medioambientales (pp. 15–22). Madrid: CSIC.Google Scholar
  178. Gol’eva, A. A. (2001). Phytoliths and their informational role in natural and archaeological objects. Syktuvar Elista, Moscow: Russian Academy of Sciences.Google Scholar
  179. Grave, P., & Kealhofer, L. (1999). Assessing bioturbation in archaeological sediments using soil morphology and phytolith analysis. Journal of Archaeological Science, 26, 1239–1248.Google Scholar
  180. Greenwood, D. R., & Wing, S. L. (1995). Eocene continental climates and latitudinal temperature gradients. Geology, 23, 1044–1048.Google Scholar
  181. Griffith, D. M., Anderson, T. M., Osborne, C. P., Strömberg, C. A. E., Forrestel, E. J., & Still, C. J. (2014). Biogeographically distinct controls on C3 and C4 grass distributions: merging community and physiological ecology. Global Ecology and Biogeography, 24, 304–313.Google Scholar
  182. Gu, Y., Zhao, Z., & Pearsall, D. M. (2013). Phytolith morphology research on wild and domesticated rice species in East Asia. Quaternary International, 287, 141–148.Google Scholar
  183. Gügel, I. L., Grupe, G., & Kunzelmann, K. H. (2001). Simulation of dental microwear: characteristic traces by opal phytoliths give clues to ancient human dietary behavior. American Journal of Physical Anthropology, 114, 124–138.Google Scholar
  184. Guo, M., Jie, D., Liu, H., Luo, S., & Li, N. (2012). Phytolith analysis of selected wetland plants from Changbai mountain region and implications for palaeoenvironment. Quaternary International, 250, 119–128.Google Scholar
  185. Habermann, J. M., Stanistreet, I. G., Stollhofen, H., Albert, R. M., Bamford, M. K., Pante, M. C., et al. (2016). In situ 2.0 Ma trees discovered as fossil rooted stumps, lowermost Bed I, Olduvai Gorge, Tanzania. Journal of Human Evolution, 9, 74–87.Google Scholar
  186. Halffter, G., & Matthews, E. G. (1966). The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera: Scarabaeidae). Folia Entomologica Mexicana, 12–14, 1–312.Google Scholar
  187. Hanski, I. (1983). Dung beetles. In H. Lieth & M. J. A. Werger (Eds.), Tropical rain forest ecosystems, vol 14B. Ecosystems of the World, 1st edn. (pp. 489–511). Amsterdam: Elsevier.Google Scholar
  188. Harris, E. B. (2016). Effects of the mid-Miocene climatic optimum on ecosystem structure and plant-animal interactions: A phytolith and stable isotope perspective. Ph.D. Dissertation, Department of Biology. University of Washington, Seattle, 212 pages.Google Scholar
  189. Harris, E. B., Strömberg, C. A. E., Sheldon, N. D., Smith, S. Y., & Vilhena, D. (2017). Vegetation response during the lead-up to the middle Miocene warming event in the Northern Rocky Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 401–415.CrossRefGoogle Scholar
  190. Hart, D. M. (1988). The plant opal content in the vegetation and sediment of a swamp at Oxford Falls, New South Wales, Australia. Australian Journal of Botany, 36, 159–170.Google Scholar
  191. Hartley, S. E., & DeGabriel, J. L. (2016). The ecology of herbivore-induced silicon defences in grasses. Functional Ecology, 30, 1311–1322.Google Scholar
  192. He, H., Bleby, T. M., Veneklaas, E. J., Lambers, H., & Kuo, J. (2012). Morphologies and elemental compositions of calcium crystals in phyllodes and branchlets of Acacia robeorum (Leguminosae: Mimosoideae). Annals of Botany, 109, 887–896.Google Scholar
  193. Henry, A. G. (2012). Recovering dietary information from extant and extinct primates using plant microremains. International Journal of Primatology, 33, 702–715.Google Scholar
  194. Henry, A. G., Brooks, A. S., & Piperno, D. R. (2011). Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proceedings of the National Academy of Sciences, USA, 108, 486–491.Google Scholar
  195. Henry, A. G., Brooks, A. S., & Piperno, D. R. (2014). Plant foods and the dietary ecology of Neanderthals and early modern humans. Journal of Human Evolution, 69, 44–54.Google Scholar
  196. Henry, A. G., & Piperno, D. R. (2008). Using plant microfossils from dental calculus to recover human diet: a case study from Tell al-Raqā’i, Syria. Journal of Archaeological Science, 35, 1943–1950.Google Scholar
  197. Henry, A. G., Ungar, P. S., Passey, B. H., Sponheimer, M., Rossouw, L., Bamford, M., et al. (2012). The diet of Australopithecus sediba. Nature, 487, 90–93.Google Scholar
  198. Hodson, M. J. (2016). The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology. Journal of Archaeological Science, 68, 62–69.Google Scholar
  199. Hodson, M. J., White, P. J., Mead, A., & Broadley, M. R. (2005). Phylogenetic variation in the silicon composition of plants. Annals of Botany, 96, 1027–1046.Google Scholar
  200. Hoetzel, S., Dupont, L., Schefuß, E., Rommerskirchen, F., & Wefer, G. (2013). The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution. Nature Geoscience, 6, 1027–1030.Google Scholar
  201. Honaine, M. F., Osterrieth, M. L., & Zucol, A. F. (2009). Plant communities and soil phytolith assemblages relationship in native grasslands from southeastern Buenos Aires province, Argentina. Catena, 76, 89–96.Google Scholar
  202. Horrocks, M., Baisden, T., Flenley, J., Feek, D., Love, C., Haoa-Cardinali, S., et al. (2016). Pollen, phytolith and starch analyses of dryland soils from Easter Island (Rapa Nui) show widespread vegetation clearance and Polynesian-introduced crops. Palynology, 41, 339–350.Google Scholar
  203. Hwang, S., Yoon, S.-O., Lee, J.-Y., Kim, H.-S., & Choi, J. (2012). Phytolith analysis and reconstruction of palaeoenvironment at the Nabokri Valley Plain, Buyeo, Korea. Quaternary International, 254, 129–137.Google Scholar
  204. Hyland, E., Sheldon, N. D., & Fan, M. (2013a). Terrestrial paleoenvironmental reconstructions indicate transient peak warming during the Early Eocene Climatic Optimum. Geological Society of America Bulletin, 125, 1338–1348.Google Scholar
  205. Hyland, E., Sheldon, N. D., & Smith, S. Y. (2013b). Representational bias in phytoliths from modern soils of central North America: implications for paleovegetation reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 374, 338–348.Google Scholar
  206. Hyland, E. G., Sheldon, N. D., & Cotton, J. M. (2015). Terrestrial evidence for a two-stage mid-Paleocene biotic event. Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 371–378.Google Scholar
  207. ICPN Working Group: Madella, M., Alexandre, A., & Ball, T. (2005). International code for phytolith nomenclature 1.0. Annals of Botany, 96, 253–260.Google Scholar
  208. Iles, W. J., Smith, S. Y., Gandolfo, M. A., & Graham, S. W. (2015). Monocot fossils suitable for molecular dating analyses. Botanical Journal of the Linnean Society, 178, 346–374.Google Scholar
  209. Inoue, K., & Sase, T. (1996). Paleoenvironmental history of post-Toya ash tephric deposits and paleosols at Iwate Volcano, Japan, using aeolian dust content and phytolith composition. Quaternary International, 34–36, 127–137.Google Scholar
  210. Iriarte, J. (2003). Assessing the feasibility of identifying maize through the analysis of cross-shaped size and three-dimensional morphology of phytoliths in the grasslands of southeastern South America. Journal of Archaeological Science, 30, 1085–1094.Google Scholar
  211. Iriarte, J., & Paz, E. A. (2009). Phytolith analysis of selected native plants and modern soils from southeastern Uruguay and its implications for paleoenvironmental and archeological reconstruction. Quaternary International, 193, 99–123.Google Scholar
  212. Issaharou-Matchi, I., Barboni, D., Meunier, J. D., Saadou, M., Dussouillez, P., Contoux, C., et al. (2016). Intraspecific biogenic silica variations in the grass species Pennisetum pedicellatum along an evapotranspiration gradient in South Niger. Flora – Morphology, Distribution, Functional Ecology of Plants, 220, 84–93.Google Scholar
  213. Jacobs, B. F., Kingston, J. D., & Jacobs, L. L. (1999). The origin of grass-dominated ecosystems. Annals of the Missouri Botanical Garden, 86, 590–643.Google Scholar
  214. Janis, C. M. (1988). An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preferences. In D. E. Russel, J.-P. Santoro & D. Sigogneau-Russel (Eds.), Teeth revisited: Proceedings of the VIIth International Symposium on Dental Morphology, Paris, France, 1988 (pp. 367–387). Paris: Memoires de Museum National d’Histoire Naturelle, series C.Google Scholar
  215. Jones, J. G., & Bryant, V. M., Jr. (1992). Phytolith taxonomy in selected species of Texas cacti. In G. J. Rapp & S. C. Mulholland (Eds.), Phytolith systematics. Emerging issues, vol 1. Advances in Archaeological and Museum Science (pp. 215–238). New York: Plenum Press.Google Scholar
  216. Jones, L. H. P., & Handreck, K. A. (1967). Silica in soils, plants, and animals. Advances in Agronomy, 19, 107–149.Google Scholar
  217. Jones, L. H. P., Milne, A. A., & Sanders, J. V. (1966). Tabashir: an opal of plant origin. Science, 151, 464–466.Google Scholar
  218. Jones, R. L. (1964). Note on occurrence of opal phytoliths in some Cenozoic sedimentary rocks. Journal of Paleontology, 38, 773–775.Google Scholar
  219. Jones, R. L., & Beavers, A. H. (1963). Some mineralogical and chemical properties of plant opal. Soil Science, 96, 6.Google Scholar
  220. Jones, R. L., & Beavers, A. H. (1964). Aspects of catenary and depth distribution of opal phytoliths in Illinois soils. Proceedings of the Soil Science Society of America, 28, 413–416.Google Scholar
  221. Jubb, K. V. F., Kennedy, P. C., & Palmer, N. (1985). Pathology of domestic animals (3rd ed., Vol. 2). Orlando, Florida: Academic Press, Inc.Google Scholar
  222. Katz, O. (2015). Silica phytoliths in angiosperms: phylogeny and early evolutionary history. New Phytologist, 208, 642–464.Google Scholar
  223. Katz, O., Cabanes, D., Weiner, S., Maeir, A. M., Boaretto, E., & Shahack-Gross, R. (2010). Rapid phytolith extraction for analysis of phytolith concentrations and assemblages during an excavation: an application at Tell es-Safi/Gath, Israel. Journal of Archaeological Science, 37, 1557–1563.Google Scholar
  224. Katz, O., Gilead, I., Bar (Kuthiel), P., & Shahack-Gross, R. (2007). Chalcolithic agricultural life at Grar, northern Negev, Israel: dry farmed cereals and dung-fueled hearths. Paléorient, 33, 101–116.Google Scholar
  225. Katz, O., Lev-Yadun, S., & Bar, P. (2013). Plasticity and variability in the patterns of phytolith formation in Asteraceae species along a large rainfall gradient in Israel. Flora, 208, 438–444.Google Scholar
  226. Kaufman, P. B., Takeoka, P., Bigelow, W. C., Schmid, R., & Ghosheh, N. S. (1971). Electron microprobe analysis of silica in epidermal cells of Equisetum. American Journal of Botany, 58, 309–316.Google Scholar
  227. Kawano, T., Sasaki, N., Hayashi, T., & Takahara, H. (2012). Grassland and fire history since the late-glacial in northern part of Aso Caldera, central Kyusyu, Japan, inferred from phytolith and charcoal records. Quaternary International, 254, 18–27.Google Scholar
  228. Kay, R. F., Madden, R. H., Vucetich, M. G., Carlini, A. A., Mazzoni, M. M., Re, G. H., et al. (1999). Revised geochronology of the Casamayoran South American Land Mammal Age: climatic and biotic implications. Proceedings of the National Academy of Sciences, USA, 96, 13235–13240.Google Scholar
  229. Kealhofer, L. (1996). The human environment during the terminal Pleistocene and Holocene in northeastern Thailand: phytolith evidence from Lake Kumphawapi. Asian Perspectives, 35, 229–254.Google Scholar
  230. Kealhofer, L., & Penny, D. (1998). A combined pollen and phytolith record for fourteen thousand years of vegetation change in northeastern Thailand. Review of Palaeobotany and Palynology, 103, 83–93.Google Scholar
  231. Kealhofer, L., & Piperno, D. (1998). Opal phytoliths in Southeast Asian flora. Smithsonian Contributions to Botany, 88, 1–39.Google Scholar
  232. Keeley, J. E., & Rundel, P. W. (2005). Fire and the Miocene expansion of C4 grasslands. Ecology Letters, 8, 683–690.Google Scholar
  233. Kellogg, E. A. (2015). Fossil record and dates of diversification. In E. A. Kellogg, Flowering Plants. Monocots (pp. 103–107). Cham: Springer.Google Scholar
  234. Kellogg, E. A., & Campbell, C. S. (1987). Phylogenetic analyses of the Gramineae. In T. R. Soderstrom, K. W. Hilu, C. S. Campbell, & M. E. Barkworth (Eds.), Grass systematics and evolution (pp. 310–322). Washington, D. C.: Smithsonian Institution.Google Scholar
  235. Kelly, E. F., Amundson, R. G., Marino, B. D., & Deniro, M. J. (1991). Stable isotope ratios of carbon in phytoliths as a quantitative method of monitoring vegetation and climate change. Quaternary Research, 35, 222–233.Google Scholar
  236. Kendrick, K. J. (2005). Pedogenic silica accumulation. In L. Rattan (Ed.), Encyclopedia of soil science (pp. 1251–1253). Taylor & Francis.Google Scholar
  237. Kendrick, K. J., & Graham, R. C. (2004). Pedogenic silica accumulation in chronosequence soils, southern California. Soil Science Society of America Journal, 68, 1295–1303.Google Scholar
  238. Kerns, B. K. (2001). Diagnostic phytoliths for a ponderosa pine-bunchgrass community near Flagstaff, Arizona. The Southwestern Naturalist, 46, 282–294.Google Scholar
  239. Kerns, B. K., Moore, M. M., & Hart, S. C. (2001). Estimating forest-grassland dynamics using soil phytolith assemblages and d13C of soil organic matter. Ecoscience, 8, 478–488.Google Scholar
  240. Klein, R. L., & Geis, J. W. (1978). Biogenic silica in the Pinaceae. Soil Science, 126, 145–156.Google Scholar
  241. Kohn, M. J., Strömberg, C. A. E., Madden, R. H., Dunn, R. E., Evans, S., Palacios, A., et al. (2015). Quasi-static Eocene-Oligocene climate in Patagonia promotes slow faunal evolution and mid-Cenozoic global cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 435, 24–37.Google Scholar
  242. Kondo, R., Childs, C., & Atkinson, I. (1994). Opal phytoliths of New Zealand. Canterbury, New Zealand: Manaaki Whenua Press.Google Scholar
  243. Kondo, R., & Pearson, T. (1981). Opal phytoliths in tree leaves (Part 2): Opal phytoliths in dicotyledon angiosperm trees leaves. Research Bulletin of Obihiro University, Series, 1, 217–230.Google Scholar
  244. Kondo, R., & Sase, T. (1986). Opal phytoliths, their nature and application. The Quaternary Research, 25, 31–63.Google Scholar
  245. Kraus, M. J. (1999). Paleosols in clastic sedimentary rocks: their geologic applications. Earth-Science Reviews, 47, 41–70.Google Scholar
  246. Krauss, D. A. (1997). The use of phytolith analysis in paleoenvironmental reconstruction and environmental management on Martha’s Vineyard, Massachusetts. Ph.D. Dissertation, University of Massachusetts, Boston.Google Scholar
  247. Kumar, S., Milstein, Y., Brami, Y., Elbaum, M., & Elbaum, R. (2017). Mechanism of silica deposition in sorghum silica cells. New Phytologist, 213, 791–798.Google Scholar
  248. Kumari, I. S., & Kumarasamy, D. (2014). Studies on phytoliths in some marine plants. International Journal of Plant, Animal and Environmental Sciences, 4, 1–5.Google Scholar
  249. Kurmann, M. H. (1985). An opal phytolith and palynomorph study of extant and fossil soils in Kansas (U.S.A.). Palaeogeography, Palaeoclimatology, Palaeoecology, 49, 217–235.Google Scholar
  250. Kürschner, W. M. (1997). The anatomical diversity of recent and fossil leaves of the durmast oak (Quercus petraea Lieblein/Q. pseudocastanea Goeppert)—Implications for their use as biosensors of palaeoatmospheric CO2 levels. Palaeogeography, Palaeoclimatology, Palaeoecology, 96, 1–30.Google Scholar
  251. Lander, B. (1998). Oreodontoidea. In C. M. Janis, K. M. Scott, L. L. Jacobs (Eds.), Evolution of Tertiary mammals in North America. Volume 1: Terrestrial carnivores, ungulates, and ungulatelike mammals (pp. 402–420). Cambridge: Cambridge University Press.Google Scholar
  252. Law, C., & Exley, C. (2011). New insight into silica deposition in horsetail (Equisetum arvense). BMC Plant Biology, 11, 112.Google Scholar
  253. Lazzati, A., Levrini, L., Rampazzi, L., Dossi, C., Castelletti, L., Licata, M., et al. (2016). The diet of three Medieval individuals from Caravate (Varese, Italy). Combined results of ICP‐MS analysis of trace elements and phytolith analysis conducted on their dental calculus. International Journal of Osteoarchaeology, 26, 670–681.Google Scholar
  254. Lehmann, C. E., Anderson, T. M., Sankaran, M., Higgins, S. I., Archibald, S., Hoffmann, W. A., et al. (2014). Savanna vegetation-fire-climate relationships differ among continents. Science, 343, 548–552.Google Scholar
  255. Lentfer, C. J., & Boyd, W. E. (1998). A comparison of three methods for the extraction of phytoliths from sediments. Journal of Archaeological Science, 25, 1159–1183.Google Scholar
  256. Lentfer, C. J., & Boyd, W. E. (1999). An assessment of techniques for the deflocculation and removal of clays from sediments used in phytolith analysis. Journal of Archaeological Science, 26, 31–44.Google Scholar
  257. Lentfer, C. J., & Boyd, W. E. (2000). Simultaneous extraction of phytoliths, pollen and spores from sediments. Journal of Archaeological Science, 27, 363–372.Google Scholar
  258. Lentfer, C. J., Cotter, M. M., & Boyd, W. E. (2003). Particle settling times for gravity sedimentation and centrifugation: a practical guide for palynologists. Journal of Archaeological Science, 30, 149–168.Google Scholar
  259. Levin, N. E., Quade, J., Simpson, S. W., Semaw, S., & Rogers, M. (2004). Isotopic evidence for Plio-Pleistocene environmental change at Gona, Ethiopia. Earth and Planetary Science Letters, 219, 93–110.Google Scholar
  260. Liang, M.-M. (2004). Palynology, palaeocology and palaeoclimate of the Miocene Shanwang Basin, Shangdong Province, China. Acta Palaeobotanica, Supp. No. 5, 1–95.Google Scholar
  261. Lieverse, A. R. (1999). Diet and the aetiology of dental calculus. International Journal of Osteoarchaeology, 9, 219–232.Google Scholar
  262. Lins, U., Barros, C., Da Cunha, M., & Miguens, F. C. (2002). Structure, morphology, and composition of silicon biocomposites in the palm tree Syagrus coronata (Mart.) Becc. Protoplasma, 220, 89–96.Google Scholar
  263. Linseele, V., Riemer, H., Baeten, J., De Vos, D., Marinova, E., & Ottoni, C. (2013). Species identification of archaeological dung remains: a critical review of potential methods. Environmental Archaeology, 18, 5–17.Google Scholar
  264. Little, S. A., Kembel, S. W., & Wilf, P. (2010). Paleotemperature proxies from leaf fossils reinterpreted in light of evolutionary history. PLoS ONE, 5, e15161.Google Scholar
  265. Liu, H., Jie, D., Liu, L., Li, N., Wang, T., & Qiao, Z. (2016). The shape factors of phytoliths in selected plants from the Changbai Mountains and their implications. Review of Palaeobotany and Palynology, 226, 44–53.Google Scholar
  266. Locker, S., & Martini, E. (1986). Phytoliths from the southwest Pacific Site 591. Initial reports of the Deep Sea Drilling Program, 90, 1079–1084.Google Scholar
  267. Loucaides, S., Behrends, T., & Van Cappellen, P. (2010). Reactivity of biogenic silica: surface versus bulk charge density. Geochimica et Cosmochimica Acta, 74, 517–530.Google Scholar
  268. Lu, H.-Y., & Liu, K.-B. (2003a). Morphological variations of lobate phytoliths from grasses in China and the south-eastern United States. Diversity and Distributions, 9, 73–87.Google Scholar
  269. Lu, H.-Y., & Liu, K.-B. (2003b). Phytoliths of common grasses in the coastal environments of southeastern USA. Estuarine Coastal and Shelf Science 58, 587–600.Google Scholar
  270. Lu, H.-Y., Wu, N.-Q., Liu, K.-B., Jiang, H., & Liu, T.-S. (2007). Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: palaeoenvironmental reconstruction in the Loess Plateau. Quaternary Science Reviews, 26, 759–772.Google Scholar
  271. Lu, H.-Y., Wu, N.-Q., Yang, X.-D., Jiang, H., Liu, K.-B., & Liu, T.-S. (2006). Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China I: Phytolith-based transfer functions. Quaternary Science Reviews, 25, 945–959.Google Scholar
  272. Lu, H. Y., Wang, Y. J., Wang, G. A., Yang, H., & Li, Z. (2000). Analysis of carbon isotope in phytoliths from C3 and C4 plants and modern soils. Chinese Science Bulletin, 45, 1804–1808.Google Scholar
  273. Ma, J. F. (2003). Mechanism of Si uptake in plants. Fertilizer, 94, 26–32.Google Scholar
  274. Ma, J. F., Takahashi, E. (2002). Soil, fertilizer, and plant silicon research in Japan. Elsevier Science. 294 p.Google Scholar
  275. Ma, J. F., Miyake, Y., & Takahashi, E. (2001). Chapter 2. Silicon as a beneficial element for crop plants. In L. E. Datnoff, G. H. Snyder & G. H. Korndörfer (Eds.), Silicon in agriculture. Studies in plant science, vol 8 (pp. 17–39). Amsterdam: Elsevier Science B.V.Google Scholar
  276. Ma, J. F., & Yamaji, N. (2008). Functions and transport of silicon in plants. Cellular and Molecular Life Sciences, 65, 3049–3057.Google Scholar
  277. MacFadden, B. J. (1997). Origin and evolution of the grazing guild in New World terrestrial mammals. Trends in Ecology & Evolution, 12, 182–187.Google Scholar
  278. Madden, R. H., Carlini, A. A., Vucetich, M. G., & Kay, R. F. (Eds.). (2010). The paleontology of Gran Barranca. Cambridge: Cambridge University Press.Google Scholar
  279. Madella, M., Jones, M. K., Echlin, P., Powers-Jones, A., & Moore, M. (2009). Plant water availability and analytical microscopy of phytoliths: implications for ancient irrigation in arid zones. Quaternary International, 193, 32–40.Google Scholar
  280. Madella, M., & Lancelotti, C. (2012). Taphonomy and phytoliths: a user manual. Quaternary International, 275, 76–83.Google Scholar
  281. Madella, M., Powers-Jones, A. H., & Jones, M. K. (1998). A simple method of extraction of opal phytoliths from sediments using a non-toxic heavy liquid. Journal of Archaeological Science, 25, 801–803.Google Scholar
  282. Mander, L., Li, M., Mio, W., Fowlkes, C. C., & Punyasena, S. W. (2013). Classification of grass pollen through the quantitative analysis of surface ornamentation and texture. Proceedings of the Royal Society B, 280, 20131905.Google Scholar
  283. Marx, R., Lee, D. E., Lloyd, K. M., & Lee, W. G. (2004). Phytolith morphology and biogenic silica concentrations and abundance in leaves of Chionochloa (Danthonieae) and Festuca (Poeae) in New Zealand. New Zealand Journal of Botany, 42, 677–691.Google Scholar
  284. Massey, F. P., Ennos, A. R., & Hartley, S. E. (2006). Silica in grasses as a defence against insect herbivores: contrasting effects on folivores and a phloem feeder. Journal of Animal Ecology, 75, 595–603.Google Scholar
  285. Mazumdar, J., & Mukhopadhyay, R. (2009a). Opal phytoliths in three Indian thelypteroid ferns. Bionature, 29, 11–15.Google Scholar
  286. Mazumdar, J., & Mukhopadhyay, R. (2009b). Phytoliths of some lycopods. Indian Fern Journal, 26, 132–136.Google Scholar
  287. Mazumdar, J., & Mukhopadhyay, R. (2010a). Phytoliths of Ferns II: in some more thelypteroid ferns. Bionature, 30, 13–17.Google Scholar
  288. Mazumdar, J., & Mukhopadhyay, R. (2010b). Phytoliths of Ferns III. in Himalayan horsetail and some ferns. Bionature, 30, 39–45.Google Scholar
  289. Mazumdar, J., & Mukhopadhyay, R. (2011). Phytoliths of ferns IV: in some aquatic ferns and Chinese brake fern. Bioresearch Bulletin, 6, 385–388.Google Scholar
  290. Mazzoni, M. M. (1979). Contribución al conocimiento petrográfico de la Formación Sarmiento, barranca sur del lago Colhue Huapi, provincia de Chubut. Revista de la Asociación Argentina de Mineralogía, Petrología y Sedimentología, 10, 33–54.Google Scholar
  291. McClaran, M. P., & Umlauf, M. (2000). Desert grassland dynamics estimated from carbon isotopes in grass phytoliths and soil organic matter. Journal of Vegetation Science, 11, 71–76.Google Scholar
  292. McCullough, D. R. (1982). White-tailed deer pellet-group weights. The Journal of Wildlife Management, 46, 829–832.Google Scholar
  293. McCune, J. L., & Pellatt, M. G. (2013). Phytoliths of southeastern Vancouver Island, Canada, and their potential use to reconstruct shifting boundaries between Douglas-fir forest and oak savannah. Palaeogeography, Palaeoclimatology, Palaeoecology, 383, 59–71.Google Scholar
  294. McCune, J. L., Vellend, M., & Pellatt, M. G. (2014). Combining phytolith analysis with historical ecology to reveal the long-term, local-scale dynamics within a savannah-forest landscape mosaic. Biodiversity and Conservation, 24, 609–626.Google Scholar
  295. McInerney, F. A., Strömberg, C. A. E., & White, J. W. C. (2011). The Neogene transition from C3 to C4 grasslands in North America: stable carbon isotope ratios of fossil phytoliths. Paleobiology, 37, 23–49.Google Scholar
  296. McMichael, C. H., Bush, M. B., Piperno, D. R., Silman, M. R., Zimmerman, A. R., & Anderson, C. (2012a). Spatial and temporal scales of pre-Columbian disturbance associated with western Amazonian lakes. Holocene, 22, 131–141.Google Scholar
  297. McMichael, C. H., Piperno, D. R., Bush, M. B., Silman, M. R., Zimmerman, A. R., Raczka, M. F., et al. (2012b). Sparse pre-Columbian human habitation in western Amazonia. Science, 336, 1429–1431.Google Scholar
  298. McNab, B. K. (1963). Bioenergetics and the determination of home range size. The American Naturalist, 97, 133–140.Google Scholar
  299. Mercader, J., Astudillo, F., Barkworth, M., Bennett, T., Esselmont, C., Kinyanjui, R., et al. (2010). Poaceae phytoliths from the Niassa Rift, Mozambique. Journal of Archaeological Science, 37, 1953–1967.Google Scholar
  300. Mercader, J., Bennett, T., Esselmont, C., Simpson, S., & Walde, D. (2009). Phytoliths in woody plants from the Miombo woodlands of Mozambique. Annals of Botany, 104, 91–113.Google Scholar
  301. Mercader, J., Bennett, T., Esselmont, C., Simpson, S., & Walde, D. (2011). Soil phytoliths from Miombo woodlands in Mozambique. Quaternary Research, 75(138–150), 8.Google Scholar
  302. Mercader, J., Runge, F., Vrydaghs, L., Doutrelepont, H., Ewango, C. E. N., & Juan-Tresseras, J. (2000). Phytoliths from archaeological sites in the tropical forest of Ituri, Democratic Republic of Congo. Quaternary Research, 54, 102–112.Google Scholar
  303. Merceron, G., Novello, A., & Scott, R. S. (2016). Paleoenvironments inferred from phytoliths and Dental Microwear Texture Analyses of meso-herbivores. Geobios, 49, 135–146.Google Scholar
  304. Messager, E., Lebreton, V., Marquer, L., Russo-Ermolli, E., Orain, R., Renault-Miskovsky, J., et al. (2011). Palaeoenvironments of early hominins in temperate and Mediterranean Eurasia: new palaeobotanical data from Palaeolithic key-sites and synchronous natural sequences. Quaternary Science Reviews, 30, 1439–1447.Google Scholar
  305. Metcalfe, C. R. (1960). Anatomy of the monocotyledons, Volume I, Gramineae. London: Oxford University Press.Google Scholar
  306. Meunier, J. D., Colin, F., & Alarcon, C. (1999). Biogenic silica storage in soils. Geology, 27, 835–838.Google Scholar
  307. Middleton, W. D., & Rovner, I. (1994). Extraction of opal phytoliths from herbivore dental calculus. Journal of Archaeological Science, 21, 469–473.Google Scholar
  308. Mihlbachler, M. C., & Solounias, N. (2006). Coevolution of tooth crown height and diet in oreodonts (Merycoidodontidae, Artiodactyla) examined with phylogenetically independent contrasts. Journal of Mammalian Evolution, 13, 11–36.Google Scholar
  309. Miller, L. A., Smith, S. Y., Sheldon, N. D., & Strömberg, C. A. E. (2012). Eocene vegetation dynamics in Montana inferred from a high-resolution phytolith record. Geological Society of America Bulletin, 124, 1577–1589.Google Scholar
  310. Ming Huang, P., Li, Y., & Sumner, M. E. (Eds.). (2011). Handbook of soil sciences: Properties and processes (2nd ed.). Boca Raton, FL: Taylor & Francis Group LLC.Google Scholar
  311. Mohabey, D., & Samant, B. (2003). Floral remains from Late Cretaceous faecal mass of sauropods from central India: implication to their diet and habitat. Gondwana Geological Magazine, 6, 225–238.Google Scholar
  312. Montti, L., Honaine, M. F., Osterrieth, M., & Ribeiro, D. G. (2009). Phytolith analysis of Chusquea ramosissima Lindm. (Poaceae: Bambusoideae) and associated soils. Quaternary International, 193, 80–89.Google Scholar
  313. Morcote-Ríos, G., Bernal, R., & Raz, L. (2016). Phytoliths as a tool for archaeobotanical, palaeobotanical and palaeoecological studies in Amazonian palms. Botanical Journal of the Linnean Society, 182, 348–360.Google Scholar
  314. Morgan-Edel, K. D., Boston, P. J., Spilde, M. N., & Reynolds, R. E. (2015). Phytoliths (plant-derived mineral bodies) as geobiological and climatic indicators in arid environments. New Mexico Geology, 37, 1–20.Google Scholar
  315. Morris, L. R., Baker, F. A., Morris, C., & Ryel, R. J. (2009a). Phytolith types and type-frequencies in native and introduced species of the sagebrush steppe and pinyon-juniper woodlands of the Great Basin, USA. Review of Palaeobotany and Palynology, 157, 339–357.Google Scholar
  316. Morris, L. R., West, N. E., Baker, F. A., Van Miegroet, H., & Ryel, R. J. (2009b). Developing an approach for using the soil phytolith record to infer vegetation and disturbance regime changes over the past 200 years. Quaternary International, 193, 90–98.Google Scholar
  317. Morris, L. R., West, N. E., & Ryel, R. J. (2010). Testing soil phytolith analysis as a tool to understand vegetation change in the sagebrush steppe and pinyon-juniper woodlands of the Great Basin Desert, USA. Holocene, 20, 697–709.Google Scholar
  318. Mosimann, J. E. (1965). Statistical methods for the pollen analyst: Multinomial and negative multinomial techniques. In B. Kummel & D. Raup (Eds.), Handbook of paleontological techniques (pp. 636–673). San Francisco: W. Freeman.Google Scholar
  319. Motomura, H., Mita, N., & Suzuki, M. (2002). Silica accumulation in long-lived leaves of Sasa veitchii (Carrière) Rehder (Poaceae–Bambusoideae). Annals of Botany, 90, 149–152.Google Scholar
  320. Mulholland, S. C. (1989). Phytolith shape frequencies in North Dakota grasses: a comparison to general patterns. Journal of Archaeological Science, 16, 489–511.Google Scholar
  321. Mulholland, S. C. & Rapp, G. J. (1992). A morphological classification of grass silica-bodies. In G. J. Rapp & S. C. Mulholland (Eds.), Phytolith systematics. Emerging issues, vol 1. Advances in archaeological and museum science (pp. 65–89). New York: Plenum Press.Google Scholar
  322. Murungi, M. L., McGlynn, G., & Lejju, J. B. (2016). Alpine grassland palaeoecology of the Virunga Volcanoes, East Africa: a new phytolith record from Mt. Muhavura. Quaternary International, 434, 102–116.Google Scholar
  323. Neumann, K., Fahmy, A., Lespez, L., Ballouche, A., & Huysecom, E. (2009). The Early Holocene palaeoenvironment of Ounjougou (Mali): Phytoliths in a multiproxy context. Palaeogeography, Palaeoclimatology, Palaeoecology, 276, 87–106.Google Scholar
  324. Neumann, K., Fahmy, A. G., Müller-Scheeßel, N., & Schmidt, M. (2017). Taxonomic, ecological and palaeoecological significance of leaf phytoliths in West African grasses. Quaternary International, 434, 15–32.Google Scholar
  325. Novello, A., & Barboni, D. (2015). Grass inflorescence phytoliths of useful species and wild cereals from sub-Saharan Africa. Journal of Archaeological Science, 59, 10–22.Google Scholar
  326. Novello, A., Barboni, D., Berti-Equille, L., Mazur, J. C., Poilecot, P., & Vignaud, P. (2012). Phytolith signal of aquatic plants and soils in Chad, Central Africa. Review of Palaeobotany and Palynology, 178, 43–58.Google Scholar
  327. Novello, A., Lebatard, A.-E., Moussa, A., Barboni, D., Sylvestre, F., Bourlès, D. L., et al. (2015). Diatom, phytolith, and pollen records from a 10Be/9Be dated lacustrine succession in the Chad basin: insight on the Miocene-Pliocene paleoenvironmental changes in Central Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 430, 85–103.Google Scholar
  328. Ollendorf, A. L., Mulholland, S. C., & Rapp, Jr., G. (1988). Phytolith analysis as a means of plant identification: Arundo donax and Phragmites communis. Annals of Botany, 61, 209–214.Google Scholar
  329. Osborn, H. F. (1910). The age of mammals in Europe, Asia and North America. New York: The Macmillan Company.Google Scholar
  330. Osborne, C. P. (2008). Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 grasslands? Journal of Ecology, 96, 35–45.Google Scholar
  331. Osterrieth, M., Madella, M., Zurro, D., & Alvarez, M. F. (2009). Taphonomical aspects of silica phytoliths in the loess sediments of the Argentinean Pampas. Quaternary International, 193, 70–79.Google Scholar
  332. Panadès i Blas, X., Bartolomé i Filella, J., Strömberg, C.A.E., Soriano i Tomàs, I., Buckland, P., Serieyssol, K. K., et al. (2017). The utility of livestock dung for reconstructing recent ethnological and environmental histories. Environmental Archaeology, 22, 128–146.Google Scholar
  333. Parolin, M., Rasbold, G. G., & Pessenda, L. C. R. (2014). Paleoenvironmental conditions of Campos Gerais, Paraná, since the Late Pleistocene, based on phytoliths and C and N isotopes. In H. H. G. Coe & M. Osterrieth (Eds.), Synthesis of some phytoliths studies in South America (Brazil and Argentina) (pp. 149–170). New York: Nova Science Publishers.Google Scholar
  334. Parr, J. F. (2002). A comparison of heavy liquid floatation and microwave digestion techniques for the extraction of fossil phytoliths from sediments. Review of Palaeobotany and Palynology, 120, 315–336.Google Scholar
  335. Parr, J. F. (2006). Effect of fire on phytolith coloration. Geoarchaeology, 21, 171–185.Google Scholar
  336. Parr, J. F., Dolic, G. L., & Boyd, D. K. (2001). A microwave digestion method for the extraction of phytoliths from herbarium specimens. Review of Palaeobotany and Palynology, 116, 203–212.Google Scholar
  337. Passey, B. H., Ayliffe, L. K., Kaakinen, A., Eronen, J. T., Zhang, Z. Q., Cerling, T. E., et al. (2009). Strengthened East Asian summer monsoons during a period of high-latitude warmth? Isotopic evidence from Mio-Pliocene fossil mammals and soil carbonates from northern China. Earth and Planetary Science Letters, 277, 443–452.Google Scholar
  338. Pearsall, D. M. (1978). Phytolith analysis of archaeological soils: evidence for maize cultivation in formative Ecuador. Science, 199, 177–178.Google Scholar
  339. Pearsall, D. M. (2000). Paleoethnobotany: A handbook of procedures. 2nd edn. San Diego: Academic Press.Google Scholar
  340. Pearsall, D. M. (2016a). Phytoliths in the flora of Ecuador: The University of Missouri online phytolith database. http://phytolith.missouri.edu/.
  341. Pearsall, D. M. (2016b). The phytoliths in the flora of Ecuador project: perspectives on phytolith classification, identification, and establishing regional phytolith databases. Journal of Archaeological Science, 68, 89–97.Google Scholar
  342. Pearsall, D. M., Chandler-Ezell, K., & Chandler-Ezell, A. (2003). Identifying maize in neotropical sediments and soils using cob phytoliths. Journal of Archaeological Science, 30, 611–627.Google Scholar
  343. Penny, D., & Kealhofer, L. (2005). Microfossil evidence of land-use intensification in north Thailand. Journal of Archaeological Science, 32, 69–82.Google Scholar
  344. Perrier, X., De Langhe, E., Donohue, M., Lentfer, C., Vrydaghs, L., Bakry, F., Carreel, F., Hippolyte, I., Horry, J. P., Jenny, C., & Lebot, V. (2011). Multidisciplinary perspectives on banana (Musa spp.) domestication. Proceedings of the National Academy of Sciences, USA, 108, 11311–11318.Google Scholar
  345. Pinilla, A. & Bustillo, A. (1997). Sílicofitolitos en secencies arcillosas con silcretas, Mioceno Medio, Madrid. In A. Pinilla, J. Juan-Tresserras & M. J. Machado (Eds.), The state of the art of phytoliths in soils and plants, vol 4. Monografias del Centro de Ciencieas Medioambientales (pp. 255–265). Madrid: CSIC.Google Scholar
  346. Piperno, D. R. (1985). Phytolith analysis and tropical paleo-ecology: production and taxonomic significance of siliceous forms in New World plant domesticates and wild species. Review of Palaeobotany and Palynology, 45, 185–228.Google Scholar
  347. Piperno, D. R. (1988). Phytolith analysis, an archaeological and geological perspective. San Diego: Academic Press.Google Scholar
  348. Piperno, D. R. (1989). The occurrence of phytoliths in the reproductive structures of selected tropical angiosperms and their significance in tropical paleoecology, paleoethnobotany and systematics. Review of Palaeobotany and Palynology, 61, 147–173.Google Scholar
  349. Piperno, D. R. (1993). Phytolith and charcoal records from deep lake cores in the American tropics. In D. M. Pearsall & D. R. Piperno (Eds.), Current research in phytolith analysis: Applications in archaeology and paleoecology, vol 10. MASCA Research Papers in Science and Archaeology (pp. 58–71). Philadelphia: University Museum of Archaeology and Anthropology, University of Pennsylvania.Google Scholar
  350. Piperno, D. R. (2001). 11. Phytoliths. In J. P. Smol, H. J. B. Birks & W. M. Last (Eds.), Terrestrial, algal, and siliceous indicators, vol 3. Tracking environmental change using lake sediments (pp. 235–251). Dordrecht: Kluwer Academic Publishers.Google Scholar
  351. Piperno, D. R. (2006). Phytoliths: A comprehensive guide for archaeologists and paleoecologists 1st edn. New York: AltaMira Press.Google Scholar
  352. Piperno, D. R. (2009). Identifying crop plants with phytoliths (and starch grains) in Central and South America: a review and an update of the evidence. Quaternary International, 193, 146–159.Google Scholar
  353. Piperno, D. R. (2016). Phytolith radiocarbon dating in archaeological and paleoecological research: a case study of phytoliths from modern Neotropical plants and a review of the previous dating evidence. Journal of Archaeological Science, 68, 54–61.Google Scholar
  354. Piperno, D. R., Andres, T. C., & Stothert, K. E. (2000). Phytoliths in Cucurbita and other neotropical Cucrubitaceae and their occurrence in early archaeological sites from the lowland American tropics. Journal of Archaeological Science, 27, 193–208.Google Scholar
  355. Piperno, D. R., & Becker, P. (1996). Vegetational history of a site in the central Amazon basin derived from phytolith and charcoal records from natural soils. Quaternary Research, 45, 202–209.Google Scholar
  356. Piperno, D. R., McMichael, C., & Bush, M. B. (2015). Amazonia and the Anthropocene: what was the spatial extent and intensity of human landscape modification in the Amazon Basin at the end of prehistory? The Holocene, 25, 1588–1597.Google Scholar
  357. Piperno, D. R., & Pearsall, D. M. (1998). The silica bodies of tropical American grasses: morphology, taxonomy, and implications for grass systematics and fossil phytolith identification. Smithsonian Contributions to Botany, 85, 1–40.Google Scholar
  358. Piperno, D. R., Ranere, A. J., Holst, I., Iriarte, J., & Dickau, R. (2009). Starch grain and phytolith evidence for early ninth millennium BP maize from the Central Balsas River Valley, Mexico. Proceedings of the National Academy of Sciences, USA, 106, 5019–5024.Google Scholar
  359. Pironon, J., Meunier, J. D., Alexandre, A., Mathieu, R., Mansuy, L., Grosjean, A., et al. (2001). Individual characterization of phytoliths: experimental approach and consequences on paleoenvironment understanding. In J.-D. Meunier & F. Colin (Eds.), Phytoliths: Applications in Earth sciences and human history (pp. 329–341). Boca Raton, FL: CRC Press.Google Scholar
  360. Poinar, G., Jr. (2011). Silica bodies in the Early Cretaceous Programinis laminatus (Angiospermae: Poales). Palaeodiversity, 4, 1–6.Google Scholar
  361. Porse, S. (2008). Biomes classified by vegetsert. License: CC-BY 3.0. https://en.wikipedia.org/wiki/Vegetation-/media/File:Vegetation-no-legend.PNG. Database accessed on June 16, 2016.
  362. Powers, A. H., & Gilbertson, D. D. (1987). A simple preparation technique for the study of opal phytoliths from archaeological and Quaternary sediments. Journal of Archaeological Science, 14, 529–535.Google Scholar
  363. Powers-Jones, A. H. & Padmore, J. (1993). The use of quantitative methods and statistical analyses in the study of opal phytoliths. In D. M. Pearsall & D. R. Piperno (Eds.), Current research in phytolith analysis: Applications in archaeology and paleoecology, vol 10. MASCA Research Papers in Science and Archaeology (pp. 47–56). Philadelphia: University Museum of Archaeology and Anthropology, University of Pennsylvania.Google Scholar
  364. Prasad, V., Strömberg, C. A. E., Alimohammadian, H., & Sahni, A. (2005). Dinosaur coprolites and the early evolution of grasses and grazers. Science, 310, 1177–1180.Google Scholar
  365. Prasad, V., Strömberg, C. A. E., Leache, A., Samant, B. R. P., Tang, L., Mohabey, D. M., et al. (2011). Late Cretaceous origin of the rice tribe. Nature Communications, 2, 480.Google Scholar
  366. Prebble, M., Schallenberg, M., Carter, J., & Shulmeister, J. (2002). An analysis of phytolith assemblages for the quantitative reconstruction of late Quaternary environments of the Lower Taieri Plain, Otago, South Island, New Zealand I. Modern assemblages and transfer functions. Journal of Paleolimnology, 27, 393–413.Google Scholar
  367. Prentice, A. J., & Webb, E. A. (2016). The effect of progressive dissolution on the oxygen and silicon isotope composition of opal-A phytoliths: implications for palaeoenvironmental reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 453, 42–51.Google Scholar
  368. Prychid, C. J., Furness, C. A., & Rudall, P. J. (2003). Systematic significance of cell inclusions in Haemodoraceae and allied families: silica bodies and tapetal raphides. Annals of Botany, 92, 571–580.Google Scholar
  369. Prychid, C. J., & Rudall, P. J. (1999). Calcium oxalate crystals in monocotyledons: a review of their structure and systematics. Annals of Botany, 84, 725–739.Google Scholar
  370. Prychid, C. J., Rudall, P. J., & Gregory, M. (2004). Systematics and biology of silica bodies in monocotyledons. The Botanical Review, 69, 377–440.Google Scholar
  371. Quigley, K. M., & Anderson, T. M. (2014). Leaf silica concentration in Serengeti grasses increases with watering but not clipping: insights from a common garden study and literature review. Frontiers in Plant Science, 5, 568.Google Scholar
  372. Raigemborn, M., Brea, M., Zucol, A. F., & Matheos, S. (2009). Early Paleogene climate at mid latitude in South America: mineralogical and paleobotanical proxies from continental sequences in Golfo San Jorge basin (Patagonia, Argentina). Geologica Acta, 7, 125–145.Google Scholar
  373. Raine, J., & Askin, R. (2001). Terrestrial palynology of Cape Roberts Project Drillhole CRP-3, Victoria Land Basin, Antarctica. Terra Antartica, 8, 389–400.Google Scholar
  374. Rana, R. S., & Wilson, G. P. (2003). New Late Cretaceous mammals from the Intertrappean beds of Rangapur, India and paleobiogeographic framework. Acta Palaeontologica Polonica, 48, 331–348.Google Scholar
  375. Raven, J. A. (1983). The transport and function of silicon in plants. Biological Reviews, 58, 179–207.Google Scholar
  376. Retallack, G. (2001a). Soils of the past (2nd ed.). Malden, Massachusetts: Blackwell Science Ltd.Google Scholar
  377. Retallack, G. J. (1983a). Late Eocene and Oligocene paleosols from Badlands National Park, South Dakota. Geological Society of America Special Paper, 193, 1–82.Google Scholar
  378. Retallack, G. J. (1983b). A paleopedological approach to the interpretation of terrestrial sedimentary rocks; the mid-Tertiary fossil soils of Badlands National Park, South Dakota. Geological Society of America Bulletin, 94, 823–840.Google Scholar
  379. Retallack, G. J. (1990). Soils of the past: An introduction to paleopedology. Boston, MA: Hyman Press.Google Scholar
  380. Retallack, G. J. (1997). Neogene expansion of the North American prairie. PALAIOS, 12, 380–390.Google Scholar
  381. Retallack, G. J. (2001b). Cenozoic expansion of grasslands and climatic cooling. Journal of Geology, 109, 407–426.Google Scholar
  382. Retallack, G. J., Dugas, D. P., & Bestland, E. A. (1990). Fossil soils and grasses of a Middle Miocene East African grassland. Science, 247, 1325–1328.Google Scholar
  383. Rosen, A. M., & Weiner, S. (1994). Identifying ancient irrigation: a new method using opaline phytoliths from emmer wheat. Journal of Archaeological Science, 21, 125–132.Google Scholar
  384. Rossouw, L., & Scott, L. (2011). Phytoliths and pollen, the microscopic plant remains in Pliocene volcanic sediments around Laetoli, Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (pp. 2015–2215). Dordrecht: Springer.Google Scholar
  385. Rossouw, L., Stynder, D. D., & Haarhof, P. (2009). Evidence for opal phytolith preservation in the Langebaanweg ‘E’ Quarry Varswater Formation and its potential for palaeohabitat reconstruction. South African Journal of Science, 105, 223–227.Google Scholar
  386. Rossuow, L. (2009). The application of fossil grass-phytolith analysis in the reconstruction of late Cainozoic environments in the South African interior. Ph.D. Dissertation. Bloemfontein, South Africa: University of the Free State.Google Scholar
  387. Rovner, I. (1971). Potential of opal phytoliths for use in paleoecological reconstruction. Quaternary Research, 1, 343–359.Google Scholar
  388. Rovner, I. (1972). Note on a safer procedure for opal phytolith extraction. Quaternary Research, 2, 591.Google Scholar
  389. Royer, D. L., Osborne, C. P., & Beerling, D. J. (2002). High CO2 increases the freezing sensitivity of plants: implications for paleoclimatic reconstructions from fossil floras. Geology, 30, 963–966.Google Scholar
  390. Rudall, P. J., Prychid, C. J., & Gregory, T. (2014). Epidermal patterning and silica phytoliths in grasses: an evolutionary history. The Botanical Review, 80, 59–71.Google Scholar
  391. Runge, F. (1996). Opal Phytolithe in Pflantzen aus dem humiden und semi-ariden Osten Afrikas und ihre Bedeutung fur die Klima- und Vegetationsgeschichte. Botanische Jahrbüch für Systematik, 118, 303–363.Google Scholar
  392. Runge, F. (1999). The opal phytolith inventory of soils in central Africa – quantities, shapes, classification, and spectra. Review of Palaeobotany and Palynology, 107, 23–53.Google Scholar
  393. Runge, F. (2001). Evidence for land use history by opal phytolith analysis: examples from the central African tropics (eastern Kivu, D. R. Congo). In J. D. Meunier & F. Colin (Eds.), Phytoliths: Applications in Earth sciences and human history (pp. 73–85). Lisse: A.A. Balkema Publishers.Google Scholar
  394. Runge, F. & Runge, J. (1997). Opal phytoliths in East African plants and soils. In A. Pinilla, J. Juan-Tresserras & M. J. Machado (Eds.), The state of the art of phytoliths in soils and plants, vol 4. Monografias del Centro de Ciencieas Medioambientales (pp. 71–81). Madrid: CSIC.Google Scholar
  395. Sánchez, M. V., Gonzalez, M. G., & Genise, J. F. (2010). Phytolith analysis of Coprinisphaera, unlocking dung beetle behaviour, herbivore diets and palaeoenvironments along the Middle Eocene-Early Miocene of Patagonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 285, 224–236.Google Scholar
  396. Sandve, S. R., & Fjellheim, S. (2010). Did gene family expansions during the Eocene-Oligocene boundary climate cooling play a role in Pooideae adaptation to cool climates? Molecular Ecology, 19, 2075–2088.Google Scholar
  397. Sangster, A. G., Hodson, M. J., & Tubb, H. J. (2001). Silicon deposition in higher plants. In L. E. Datnoff, G. H. Snyder, & G. H. Korndörfer (Eds.), Silicon in agriculture (pp. 85–113). Amsterdam: Elsevier.Google Scholar
  398. Sangster, A. G., & Parry, D. W. (1969). Some factors in relation to bulliform cell silicification in the grass leaf. Annals of Botany, 33, 315–323.Google Scholar
  399. Sankaran, M., Ratnam, J., & Hanan, N. (2007). Woody cover in African savannas: the role of resources, fire and herbivory. Global Ecology and Biogeography, 2007, 1–10.Google Scholar
  400. Santos, G., Alexandre, A., Southon, J., Treseder, K., Corbineau, R., & Reyerson, P. (2012). Possible source of ancient carbon in phytolith concentrates from harvested grasses. Biogeosciences, 9, 1873–1884.Google Scholar
  401. Sase, T. & Hosono, M. (2001). Phytolith record in soils interstratified with late Qauternary tephras overlying the eastern region of Towada volcano. In J.D. Meunier & F. Colin (Eds.), Phytoliths: Applications in Earth sciences and human history (pp. 57–71). Lisse: A.A. Balkema Publishers.Google Scholar
  402. Scurfield, G., Anderson, C. A., & Segnit, E. R. (1974a). Silica in woody stems. Australian Journal of Botany, 22, 211–229.Google Scholar
  403. Scurfield, G., Segnit, E. R., & Anderson, C. A. (1974b). Silicification of wood. In Scanning electron microscopy. Part II. Proceedings of the Workshop on Scanning Electron Microscopy and the Plant Sciences. Chicago: IIT Research Institute.Google Scholar
  404. Selkin, P. A., Strömberg, C. A. E., Dunn, R. E., Kohn, M. J., Carlini, A. A., Davies-Vollum, K. S., et al. (2015). Climate, dust, and fire across the Eocene-Oligocene transition, Patagonia. Geology, 43, 567–570.Google Scholar
  405. Shahack-Gross, R. (2011). Herbivorous livestock dung: formation, taphonomy, methods for identification, and archaeological significance. Journal of Archaeological Science, 38, 205–218.Google Scholar
  406. Shahack-Gross, R., Boaretto, E., Cabanes, D., Katz, O., & Finkelstein, I. (2014). Subsistence economy in the Negev Highlands: the Iron Age and the Byzantine/Early Islamic period. Levant, 46, 98–117.Google Scholar
  407. Sheldon, N. D., & Tabor, N. J. (2009). Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews, 95, 1–52.Google Scholar
  408. Shi, G., Grimaldi, D. A., Harlow, G. E., Wang, J., Yang, M., Lei, W., et al. (2012). Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research, 37, 155–163.Google Scholar
  409. Shoji, S., Nanzyo, M., & Dahlgren, R. (1994). Volcanic ash soils: Genesis, properties and utilization, vol 21. Amsterdam: Elsevier Science Publishers B.V.Google Scholar
  410. Simpson, K. J., Ripley, B. S., Christin, P. A., Belcher, C. M., Lehmann, C. E., Thomas, G. H., et al. (2016). Determinants of flammability in savanna grass species. Journal of Ecology, 104, 138–148.Google Scholar
  411. Smiley, C., & Huggins, L. M. (1981). Pseudofagus idahoensis, n. gen. et sp. (Fagaceae) from the Miocene Clarkia Flora from Idaho. American Journal of Botany, 68, 741–761.Google Scholar
  412. Smith, F. A., & Anderson, K. B. (2001). Characterization of organic compounds in phytoliths: improving the resolving power of phytoliths d13C as a tool for paleoecological reconstruction of C3 and C4 grasses. In J. D. Meunier & F. Colin (Eds.), Phytoliths: Applications in Earth sciences and human history (pp. 317–327). Lisse: A.A. Balkema Publishers.Google Scholar
  413. Smith, F. A., & White, J. W. C. (2004). Modern calibration of phytolith carbon isotope signatures for C3/C4 paleograssland reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 207, 277–304.Google Scholar
  414. Soderstrom, T. R., & Calderón, C. E. (1974). Primitive forest grasses and evolution of the Bambusoideae. Biotropica, 6, 141–153.Google Scholar
  415. Soil Survey Staff (2006). Keys to soil taxonomy (10 ed.). Washington, D. C.: U. S. Department of Agriculture, Natural Resources Conservation Services.Google Scholar
  416. Song, Z., McGrouther, K., & Wang, H. (2016). Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems. Earth-Science Reviews, 158, 19–30.Google Scholar
  417. Soreng, R. J., Peterson, P. M., Romaschenko, K., Davidse, G., Zuloaga, F. O., Judziewicz, E. J., et al. (2015). A worldwide phylogenetic classification of the Poaceae (Gramineae). Journal of Systematics and Evolution, 53, 117–137.Google Scholar
  418. Spriggs, E. L., Christin, P. A., & Edwards, E. J. (2014). C4 photosynthesis promoted species diversification during the Miocene grassland expansion. PLoS ONE, 9, e9772210.Google Scholar
  419. Stebbins, G. L. (1981). Coevolution of grasses and herbivores. Annals of the Missouri Botanical Garden, 68, 75–86.Google Scholar
  420. Stevenson, R., Bothwell, M., & Loweet, R. (1996). Algal ecology: Freshwater benthic ecosystems. San Diego: Academic Press.Google Scholar
  421. Strömberg, C. A. E. (2002). The origin and spread of grass-dominated ecosystems in the Late Tertiary of North America: preliminary results concerning the evolution of hypsodonty. Palaeogeography, Palaeoclimatology, Palaeoecology, 177, 59–75.Google Scholar
  422. Strömberg, C. A. E. (2003). The origin and spread of grass-dominated ecosystems during the Tertiary of North America and how it relates to the evolution of hypsodonty in equids. Ph.D. Dissertation, University of California, Berkeley.Google Scholar
  423. Strömberg, C. A. E. (2004). Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the Great Plains during the late Eocene to early Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 207, 239–275.Google Scholar
  424. Strömberg, C. A. E. (2005). Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. Proceedings of the National Academy of Sciences, USA, 102, 11980–11984.Google Scholar
  425. Strömberg, C. A. E. (2006). The evolution of hypsodonty in equids: testing a hypothesis of adaptation. Paleobiology, 32, 236–258.Google Scholar
  426. Strömberg, C. A. E. (2007). Can slide preparation methods cause size biases in phytolith assemblages?: results from a preliminary study. In M. Madella, D. Zurro, & M. K. Jones (Eds.), Plants, people and places. Recent studies in phytolith analysis (pp. 1–12). Oxford: Oxbow Books.Google Scholar
  427. Strömberg, C. A. E. (2009a). Methodological concerns for analysis of phytolith assemblages: does count size matter? Quaternary International, 193, 124–140.Google Scholar
  428. Strömberg, C. A. E. (2009b). Reply to comment on ‘‘Methodological concerns for analysis of phytolith assemblages: does count size matter?’’. Quaternary International, 193, 143–145.Google Scholar
  429. Strömberg, C. A. E. (2011). Evolution of grasses and grassland ecosystems. Annual Review of Earth and Planetary Sciences, 39, 517–544.Google Scholar
  430. Strömberg, C. A. E., Di Stilio, V. S., & Song, Z. (2016). Functions of phytoliths in vascular plants: an evolutionary perspective. Functional Ecology, 30, 1286–1297.Google Scholar
  431. Strömberg, C. A. E., & Dunn, R. E. (2014). The vegetational context for rodent evolution in the Pacific Northwest: middle Miocene phytoliths the Mascall Formation of eastern Oregon. Geological Society of America Abstracts with Program, 46, 703.Google Scholar
  432. Strömberg, C. A. E., Dunn, R. E., Madden, R. H., Kohn, M. J., & Carlini, A. A. (2013a). Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nature Communications, 4, 1478.Google Scholar
  433. Strömberg, C. A. E., Dunn, R. E., Madden, R. H., Kohn, M. J., & Carlini, A. A. (2013b). Where have all the grasses gone?: new middle Miocene phytolith records reveal that grasslands played a minor role in hypsodonty evolution in southern South America. Journal of Vertebrate Paleontology Program and Abstracts, 73, 221.Google Scholar
  434. Strömberg, C. A. E., & McInerney, F. A. (2011). The Neogene transition from C3 to C4 grasslands in North America: assemblage analysis of fossil phytoliths. Paleobiology, 37, 50–71.Google Scholar
  435. Strömberg, C. A. E. & Stidham, T. A. (2001). Dung beetle brood balls and notoungulate diet. Journal of Vertebrate Paleontology, 21, 105A.Google Scholar
  436. Strömberg, C. A. E., Friis, E. M., Liang, M.-M., Werdelin, L., & Zhang, Y.-l., (2007a). Palaeoecology of an Early-Middle Miocene lake in China: preliminary interpretations based on phytoliths from the Shanwang Basin. Vertebrata PalAsiatica 45, 145–160.Google Scholar
  437. Strömberg, C. A. E., Werdelin, L., Friis, E. M., & Saraç, G. (2007b). The spread of grass-dominated habitats in Turkey and surrounding areas during the Cenozoic: phytolith evidence. Palaeogeography, Palaeoclimatology Palaeoecology, 250, 18–49Google Scholar
  438. Struve, G. A. (1835). De silica in Plantis Nonnullis. Ph.D. Dissertation, Humboldt University, Berlin.Google Scholar
  439. Sundue, M. (2009). Silica bodies and their systematic implications in Pteridaceae (Pteridophyta). Botanical Journal of the Linnean Society, 161, 422–435.Google Scholar
  440. Swineford, A., Franks, P. C. (1959). Opal in the Ogallala Formation in Kansas. In H. A. Ireland (Ed.), Silica in sediments (Vol. 7, pp. 111–120). Tulsa: Society of Economic Paleontologists and Mineralogists.Google Scholar
  441. Syme, A. E. (2012). Diversification rates in the Australasian endemic grass Austrostipa: 15 million years of constant evolution. Plant Systematics and Evolution, 298, 221–227.Google Scholar
  442. Taub, D. R. (2001). Climate and the U.S. distribution of C4 grass subfamilies and decarboxylation variants of C4 photosynthesis. American Journal of Botany, 87, 1211–1215.Google Scholar
  443. Tedford, R. A. (2009). A multi-proxy approach to investigating the latest Holocene (~4,500 Yrs. BP) Vegetational history of Catahoula Lake, Louisiana. Madison: University of Wisconsin-Madison.Google Scholar
  444. Thomasson, J. R. (1978). Epidermal patterns of the lemma in some fossil and living grasses and their phylogenetic significance. Science, 199, 975–977.Google Scholar
  445. Thomasson, J. R. (1984). Miocene grass (Gramineae: Arundinoideae) leaves showing external micromorphological and internal anatomical features. Botanical Gazette, 145, 204–209.Google Scholar
  446. Thomasson, J. R. (1987). Fossil grasses: 1820–1986 and beyond. In T. R. Soderstrom, K. W. Hilu, C. S. Campbell & M. E. Barkworth (Eds.), Grass systematics and evolution (pp. 159–167). Washington, D. C.: Smithsonian Institution Press.Google Scholar
  447. Thorn, V. C. (2001). Oligocene and early Miocene phytolits from CRP-2/2A and CRP-3, Victoria Land Basin, Antarctica. Terra Antartica, 8, 407–422.Google Scholar
  448. Thorn, V. C. (2007). Phytoliths in palaeoecology. Geology Today, 23, 153–157.Google Scholar
  449. Thorn, V. C. (2004a). Data report: Phytoliths in drill core sediments from Sites 1165 and 1166, Leg 188, Prydz Bay, East Antarctica. In A. K. Cooper, P. E. O’Brien & C. Richter (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, vol 188 (pp. 1–12). College Station: Texas A & M University.Google Scholar
  450. Thorn, V. C. (2004b). Phytoliths from subantarctic Campbell Island: plant production and soil surface spectra. Review of Palaeobotany and Palynology, 132, 37–59Google Scholar
  451. Thorn, V. C. (2008). New Zealand sub-Antarctic phytoliths and their potential for past vegetation reconstruction. Antarctic Science, 20, 21–32.Google Scholar
  452. Thummel, R. V., Strömberg, C. A. E., & Brightly, W. H. (2017). Evolution of phytolith deposition in modern bryophytes—implications for early land plants. Geologic Society of America Abstracts with Programs, 49.Google Scholar
  453. Tomlinson, P. B. (1961). Anatomy of the monocotyledons, Volume II, Palmae. Oxford: Oxford University Press.Google Scholar
  454. Trembath-Reichert, E., Wilson, J. P., McGlynn, S. E., & Fischer, W. W. (2015). Four hundred million years of silica biomineralization in land plants. Proceedings of the National Academy of Sciences, USA, 112, 5449–5454.Google Scholar
  455. Tsartsidou, G., Lev-Yadun, S., Albert, R.-M., Miller-Rosen, A., Efstratiou, N., & Weiner, S. (2007). The phytolith archaeological record: Strengths and weaknesses evaluated based on a quantitative modern reference collection from Greece. Journal of Archaeological Science, 34, 1262–1275.Google Scholar
  456. Tsartsidou, G., Lev-Yadun, S., Efstratiou, N., & Weiner, S. (2008). Ethnoarchaeological study of phytolith assemblages from an agro-pastoral village in Northern Greece (Sarakini): development and application of a Phytolith Difference Index. Journal of Archaeological Science, 35, 600–613.Google Scholar
  457. Twiss, P. C. (1992). Predicted world distribution of C3 and C4 grass phytoliths. In G. J. Rapp & S. C. Mulholland (Eds.), Phytolith systematics. Emerging issues, vol. 1. Advances in Archaeological and Museum Science (pp. 113–128). New York: Plenum Press.Google Scholar
  458. Twiss, P. C., Dort Jr., W., Sorenson, C. J. (1987). Grass-opal phytoliths as climatic indicators of the Great Plains Pleistocene. In W. C. Johnson (Ed.), Quaternary environments of Kansas, vol 5. Guidebook Series, Kansas Geological Survey (pp. 179–188). Kansas Geologic Survey.Google Scholar
  459. Twiss, P. C., Suess, E., & Smith, R. M. (1969). Morphological classification of grass phytoliths. Soil Science Society of America, Proceedings, 33, 109–115.Google Scholar
  460. Uhl, D., & Walther, H. (2000). Sun leaf or shade leaf? Known facts in the light of new data with implications for palaeobotany. Feddes Repert, 111, 165–174.Google Scholar
  461. Uhl, N. W., & Dransfield, J. (1987). Genera palmarum. Lawrence, Kansas: Allen Press.Google Scholar
  462. Vivanco, L., & Austin, A. T. (2006). Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America. Oecologia, 150, 97–107.Google Scholar
  463. Wallis, L. A. (2001). Environmental history of northwest Australia based on phytolith analysis at Carpenter’s Gap 1. Quaternary International, 83–85, 103–117.Google Scholar
  464. Wallis, L. A. (2003). An overview of leaf phytolith production patterns in selected northwest Australian flora. Review of Palaeobotany and Palynology, 125, 201–248.Google Scholar
  465. Wallis, L. A. (2013). A comparative study of phytolith assemblages in modern sediments from the Kimberley. Western Australia. Quaternary Australasia, 30, 6.Google Scholar
  466. Wang, Y., Cerling, T. E., MacFadden, B. J., & Bryant, J. D. (1994). Fossil horses and carbon isotopes: new evidence for Cenozoic dietary, habitat, and ecosystem changes in North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 107, 269–280.Google Scholar
  467. Wang, Y. J., & Lu, H. Y. (1993). The study of phytolith and its application. Beijing, China: China Ocean Press.Google Scholar
  468. Watling, J., & Iriarte, J. (2013). Phytoliths from the coastal savannas of French Guiana. Quaternary International, 287, 162–180.Google Scholar
  469. Watson, L. & Dallwitz, M. J. (1992). Grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochemistry, cytology, classification, pathogens, world and local distribution, and references. Version: 23rd April 2010. http://delta-intkey.com/.
  470. Watson, R. (1942). The effect of cuticular hardening on the form of epidermal cells. New Phytologist, 41, 223–229.Google Scholar
  471. Weaver, M. (1964). X-ray diffraction study of calculus of the miniature pig. Archives of Oral Biology, 9, 75–81.Google Scholar
  472. Wesolowski, V., Ferraz Mendonça de Souza, S. M., Reinhard, K. J., & Ceccantini, G. (2010). Evaluating microfossil content of dental calculus from Brazilian sambaquis. Journal of Archaeological Science, 37, 1326–1338.Google Scholar
  473. White, A. F., Vivit, D. V., Schulz, M. S., Bullen, T. D., Evett, R. R., & Aagarwal, J. (2012). Biogenic and pedogenic controls on Si distributions and cycling in grasslands of the Santa Cruz soil chronosequence, California. Geochimica et Cosmochimica Acta, 94, 72–94.Google Scholar
  474. Wilding, L. P., & Drees, L. R. (1971). Biogenic opal in Ohio soils. Soil Science Society of America, Proceedings, 35, 1004–1010.Google Scholar
  475. Wilding, L. P., & Drees, L. R. (1973). Scanning electron microscopy of opaque opaline forms isolated from forest soils in Ohio. Soil Science Society of America Proceedings, 37, 647–650.Google Scholar
  476. Wilding, L. P., & Drees, L. R. (1974). Contributions of forest opal and associated crystalline phases to fine silt and clay fractions of soils. Clays and Clay Minerals, 22, 295–306.Google Scholar
  477. Williams, L. A., & Crerar, D. A. (1985). Silica diagenesis; II, General mechanisms. Journal of Sedimentary Petrology, 55, 312–321.Google Scholar
  478. Williams, L. A., Parks, G. A., & Crerar, D. A. (1985). Silica diagenesis; I, Solubility controls. Journal of Sedimentary Petrology, 55, 301–311.Google Scholar
  479. Williams, S. H., & Kay, R. F. (2001). A comparative test of adaptive explanations for hypsodonty in ungulates and rodents. Journal of Mammalian Evolution, 8, 207–229.Google Scholar
  480. Wilson, G. P., Das Sarma, D. C., & Anantharaman, S. (2007). Late Cretaceous sudamericid gondwanatherians from India with paleobiogeographic considerations of Gondwanan mammals. Journal of Vertebrate Paleontology, 27, 521–531.Google Scholar
  481. Wing, S. L., Strömberg, C. A. E., Hickey, L. J., Tiver, F., Willis, B., Burnham, R. J., et al. (2012). Floral and environmental gradients on a Late Cretaceous landscape. Ecological Monographs, 82, 23–47.Google Scholar
  482. WoldeGabriel, G., Ambrose, S. H., Barboni, D., Bonnefille, R., Bremond, L., Currie, B., et al. (2009). The geological, isotopic, botanical, invertebrate, and lower vertebrate surroundings of Ardipithecus ramidus. Science, 326, 65–65e5.Google Scholar
  483. Yost, C. L., & Blinnikov, M. S. (2011). Locally diagnostic phytoliths of wild rice (Zizania palustris L.) from Minnesota, USA: comparison to other wetland grasses and usefulness for archaeobotany and paleoecological reconstructions. Journal of Archaeological Science, 38, 1977–1991.Google Scholar
  484. Zhao, C., & Pearsall, D. M. (1998). Experiments for improving phytolith extractions from soils. Journal of Archaeological Science, 25, 587–598.Google Scholar
  485. Zhao, Z., & Piperno, D. R. (2000). Late Pleistocene/Holocene environments in the Middle Yangtze River Valley, China and rice (Oryza sativa L.) domestication: the phytolith evidence. Geoarchaeology: An International Journal, 15, 203–222.Google Scholar
  486. Zhao, Z. J., Pearsall, D. M., Benfer, R. A., & Piperno, D. R. (1998). Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis, II – Finalized method. Economic Botany, 52, 134–145.Google Scholar
  487. Zucol, A. F., & Brea, M. (2000). Análisis fitolítico de la Formación Paraná en la provincia de Entre Ríos. In F. G. Aceñolaza & R. Herbst (Eds.), El Neógeno de Argentina (INSUGEO, Serie Correlación Geológica, Vol. 14, pp. 67–76). Tucumán.Google Scholar
  488. Zucol, A. F., & Brea, M. (2005). Sistemática de fitolitos, pautas para un sistema clasificatorio. Un caso en estudio en la Formación Alvear (Pleistoceno inferior). Ameghiniana, 42, 685–704.Google Scholar
  489. Zucol, A. F., Brea, M., & Bellosi, E. (2010). Phytolith studies in Gran Barranca (central Patagonia, Argentina): the middle-late Eocene. In R. H. Madden, A. A. Carlini, M. G. Vucetich, & R. F. Kay (Eds.), The paleontology of Gran Barranca (pp. 317–340). Cambridge: Cambridge University Press.Google Scholar
  490. Zucol, A. F., Brea, M., Bellosi, E., Carlini, A. A., & Vucetich, M. G. (2007). Preliminary phytolith analysis of Sarmiento Formation in the Gran Barranca (central Patagonia, Argentina). In M. Madella & D. Zurro (Eds.), Plants, people and places. Recent studies in phytolith analysis (pp. 189–195). Oxford: Oxbow Books.Google Scholar
  491. Zucol, A. F., & Osterrieth, M. (2002). Técnicas de preparación de muestras sedimentarias para la extracción de fitolitos. Ameghiniana, 39, 379–382Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Caroline A. E. Strömberg
    • 1
    • 2
    Email author
  • Regan E. Dunn
    • 3
    • 4
  • Camilla Crifò
    • 1
    • 2
  • Elisha B. Harris
    • 1
    • 2
  1. 1.Department of BiologyUniversity of WashingtonSeattleUSA
  2. 2.Burke Museum of Natural History & Culture, University of WashingtonSeattleUSA
  3. 3.Department of BotanyUniversity of WyomingLaramieUSA
  4. 4.Integrative Research CenterField Museum of Natural HistoryChicagoUSA

Personalised recommendations