Fossil Pollen and Spores in Paleoecology

  • Luke ManderEmail author
  • Surangi W. Punyasena
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)


The discipline of paleoecology is a multidisciplinary field that uses geological and biological evidence to investigate the past occurrence, distribution and abundance of species and populations on timescales ranging from hundreds to hundreds of millions of years. In this way, paleoecology is broadly concerned with the ecology of the past. In this article, we discuss how paleoecological data are derived from assemblages of fossil pollen and spores, which are dispersed by plants as part of their life cycles, and how this material can be used to reconstruct paleoenvironments. We outline how pollen and spores can be analyzed and classified, and explore the potential strengths and weaknesses of paleoecological data, before considering technological and methodological developments that may play a role in the future development of this discipline.


Vegetation history Plants Morphology Taxonomy Microscopy Climate 



We are grateful to David Jarzen and the three other reviewers of this chapter for their comments, which helped to clarify the material we have presented here.


  1. Bakker, S. V. Z. (1985). Exotic pollen and long-distance wind dispersal at a sub-Antarctic island. Grana, 24, 45–54.Google Scholar
  2. Bartlein, P. J., Prentice, I. C., & Webb III, T. (1986). Climatic response surfaces from pollen data for some eastern North American taxa. Journal of Biogeography, 13, 35–57Google Scholar
  3. Barreda, V. D., Palazzesi, L., Tellería, M. C., Olivero, E. B., Rine, J. I., & Forest, F. (2015). Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica. Proceedings of the National Academy of Sciences, USA, 112, 10989–10994.Google Scholar
  4. Bennett, K. D., & Willis, K. J. (2001). Pollen. In J. P. Smol, H. J. B. Birks & W. M. Last (Eds.), Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators (pp. 5–32). Dordrecht: KluwerGoogle Scholar
  5. Birks, H. H., & Birks, H. J. B. (2000). Future uses of pollen analysis must include plant macrofossils. Journal of Biography, 27, 31–35.Google Scholar
  6. Birks, H. J. B., & Birks, H. H. (1980). Quaternary Paleoecology. London: Arnold.Google Scholar
  7. Birks, H. J. B., Felde, V. A., & Seddon, A. W. R. (2016). Biodiversity trends within the Holocene. The Holocene, 26, 994–1001.Google Scholar
  8. Blois, J. L., Williams, J. W. J., Grimm, E. C., Jackson, S. T., & Graham, R. W. (2011). A methodological framework for assessing and reducing temporal uncertainty in paleovegetation mapping from late-Quaternary pollen records. Quaternary Science Reviews, 30, 1926–1939.Google Scholar
  9. Bradshaw, R. H. W., & Webb III, T. (1985). Relationships between contemporary pollen and vegetation data from Wisconsin and Michigan. Ecology, 66, 721–737Google Scholar
  10. Burnham, R. J. (1989). Relationships between standing vegetation and leaf litter in a paratropical forest: implications for paleobotany. Review of Palaeobotany and Palynology, 58, 5–32.Google Scholar
  11. Burnham, R. J., Wing, S. L., & Parker, G. G. (1992). The reflection of deciduous forest communities in leaf litter: implications for autochthonous litter assemblages from the fossil record. Paleobiology, 18, 30–49.Google Scholar
  12. Bush, M. B. (1995). Neotropical plant reproductive strategies and fossil pollen representation. The American Naturalist, 145, 594–609.Google Scholar
  13. Bush, M. B., & Rivera, R. (1998). Pollen dispersal and representation in a neotropical rain forest. Global Ecology and Biogeography Letters, 7, 379–392.Google Scholar
  14. Bush, M. B., Silman, M. R., & Urrego, D. H. (2004). 48,000 years of climate and forest change in a biodiversity hotspot. Science, 303, 827–829.Google Scholar
  15. Chaloner, W. G. (1970). The evolution of miospore polarity. Geoscience and Man, 1, 47–57.Google Scholar
  16. Chaloner, W. G. (2013). Three palynological puzzles. International Journal of Plant Sciences, 174, 602–607.Google Scholar
  17. Cowling, S. A., Cox, P. M., Jones, C. D., Maslin, M. A., Peros, M., & Spall, S. A. (2008). Simulated glacial and interglacial vegetation across Africa: implications for species phylogenies and trans-Africa migration of plants and animals. Global Change Biology, 14, 827–840.Google Scholar
  18. Cushing, E. J. (1964). Redeposited pollen in Late Wisconsin pollen spectra from east-central Minnesota. American Journal of Science, 262, 1075–1088.Google Scholar
  19. Davis, M. B. (1963). On the theory of pollen analysis. American Journal of Science, 261, 897–912.Google Scholar
  20. Davis, M. B. (1969). Climatic changes in Southern Connecticut recorded by pollen deposition at Rogers Lake. Ecology, 50, 409–422.Google Scholar
  21. Davis, M. B. (1976). Pleistocene biogeography of temperate deciduous forests. Geoscience and Man, 13, 13–26.Google Scholar
  22. Davis, M. B. (2000). Palynology after Y2K–understanding the source area of pollen in sediments. Annual Review of Earth and Planetary Sciences, 28, 1–18.Google Scholar
  23. Davis, M. B., & Shaw, R. G. (2001). Range shifts and adaptive responses to Quaternary climate change. Science, 292, 673–679.Google Scholar
  24. Dawson, A., Paciorek, C. J., McLachlan, J. S., Goring, S., Williams, J. W., & Jackson, S. T. (2016). Quantifying pollen-vegetation relationships to reconstruct ancient forests using 19th-century forest composition and pollen data. Quaternary Science Reviews, 137, 156–175.Google Scholar
  25. Delcourt, P. A., Delcourt, H. R., & Davidson, J. L. (1983). Modern pollen-vegetation relationships in southeastern United States. Review of Palaeobotany and Palynology, 39, 1–45.Google Scholar
  26. Delcourt, P. A., Delcourt, H. R., & Webb III, T. (1984). Atlas of Mapped Distributions of Dominance and Modern Pollen Percentages for Important Tree Taxa of Eastern North America. American Association of Stratigraphic Palynologists Contribution Series, No. 14.Google Scholar
  27. Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G., et al. (2006). The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography, 51, 2388–2397.Google Scholar
  28. Dunwiddie, P. W. (1987). Macrofossil and pollen representation of coniferous trees in modern sediments from Washinton. Ecology, 68, 1–11.Google Scholar
  29. Dupont, L., Behling, H., Jahns, S., Marret, F., & Kim, J.-H. (2007). Variability in glacial and Holocene marine pollen records offshore from southern Africa. Vegetation History and Archaeobotany, 16, 87–100.Google Scholar
  30. Erdtman, G. (1943). An Introduction to Pollen Analysis. Waltham: Chronica Botanica.Google Scholar
  31. Erdtman, G. (1952). Pollen Morphology and Plant Taxonomy. New York and London: Hafner.Google Scholar
  32. Fægri, K. (1966). Some problems of representativity in pollen analysis. Palaeobotanist, 15, 135–140.Google Scholar
  33. Fægri, K., Kaland, P. E., & Krzywinski, K. (1989). Textbook of pollen analysis by Knut Fægri & Johs Iversen. Chichester: Wiley.Google Scholar
  34. Fagerlind, F. (1952). The real signification of pollen diagrams. Botanisker Notiser, 105, 185–224.Google Scholar
  35. Garreta, V., Miller, P. A., Guiot, J., Hély, C., Brewer, S., Sykes, M. T., et al. (2010). A method for climate and vegetation reconstruction through the inversion of a dynamic vegetation model. Climate Dynamics, 35, 371–389.Google Scholar
  36. Gastaldo, R. A. (2001). Plant Taphonomy. In D. E. G. Briggs & P. R. Crowther (Eds.), Paleobiology II (pp. 314–317). Oxford: Blackwell Science.Google Scholar
  37. Gordon, A. D., & Birks, H. J. B. (1972). Numerical methods in Quaternary palaeoecology. I. Zonation of pollen diagrams. New Phytologist, 71, 961–979Google Scholar
  38. Gosling, W. D., Hanselman, J. A., Knox, C., Valencia, B. G., & Bush, M. B. (2009). Long-term drivers of change in Polylepis woodland distribution in the central Andes. Journal of Vegetation Science, 20, 1041–1052.Google Scholar
  39. Grimm, E. C. (1987). CONISS: A FORTRAN 77 program from stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences, 13, 13–35.Google Scholar
  40. Grimm, E. C. (1991–2001). Tillia, TiliaGraph and TGView Software. Illinois State Museum, Springfield, Illinois, USA.Google Scholar
  41. Grimm, E. C., Maher, L. J., & Nelson, D. M. (2009). The magnitude of error in conventional bulk-sediment radiocarbon dates from central North America. Quaternary Research, 72, 301–308.Google Scholar
  42. Holt, K., Allen, G., Hodgson, R., Marsland, S., & Flenley, J. (2011). Progress towards an automated trainable pollen location and classifier system for use in the palynology laboratory. Review of Palaeobotany Palynology, 167, 175–183.Google Scholar
  43. Huntley, B., & Birks, H. J. B. (1983). An Atlas of Past and Present Pollen Maps for Europe 0–13, 000 Years Ago. Cambridge: Cambridge University Press.Google Scholar
  44. Iversen, J. (1944). Viscum, Hedera and Ilex as climatic indicators. Geologiska i Stockholm Förhandlingar, 66, 463–483.Google Scholar
  45. Jackson, S. T. (1990). Pollen source area and representation in small lakes of the northeastern United States. Review of Palaeobotany and Palynology, 63, 53–76.Google Scholar
  46. Jackson, S. T., & Williams, J. W. (2004). Modern analogs in Quarternary paleoecology: here today, gone yesterday, gone tomorrow? Annual Review of Earth and Planetary Sciences, 32, 495–537.Google Scholar
  47. Jackson, S. T., & Booth, R. T. (2007). Validation of pollen studies. In S. A. Elias (Ed.), Encyclopaedia of Quaternary Sciences (pp. 725–732). Amsterdam: Elsevier Scientific Publishing.Google Scholar
  48. Jacobson, Jr., G. L., & Bradshaw, R. H. W. (1981). The selection of sites for paleovegetational studies. Quaternary Research, 16, 80–96.Google Scholar
  49. Janssen, C. R. (1973). Local and regional pollen deposition. In H. J. B. Birks & R. G. West (Eds.), Quaternary Plant Ecology (pp. 31–42). Oxford: Blackwell.Google Scholar
  50. Jarzen, D. M., & Nichols, D. J. (1996). Pollen. In J. Jansonius & D. C. McGregor (Eds.), Palynology: Principles and Applications (American Association of Stratigraphic Palynologists Foundation), vol. 1. (pp. 261–292).Google Scholar
  51. Jarzen, D. M., & Jarzen, S. A. (2006). Collecting pollen and spore samples from herbaria. Palynology, 30, 111–119.Google Scholar
  52. Juggins, S. (2007). C2 Version 1.5: Software for Ecological and Palaeoecological Data Analysis and Visualisation. Newcastle upon Tyne: University of Newcastle.Google Scholar
  53. Juggins, S. (2015) rioja: Analysis of Quaternary Science Data, R package version (0.9–9). (
  54. Katifori, E., Alben, S., Cerda, E., Nelson, D. R., & Dumais, J. (2010). Foldable structures and the natural design of pollen grains. Proceedings of the National Academy of Sciences, USA, 107, 7635–7639.Google Scholar
  55. Kershaw, A. P., & Nix, H. A. (1988). Quantitative palaeoclimatic estimates from pollen data using bioclimatic profiles of extant taxa. Journal of Biogeography, 15, 589–602.Google Scholar
  56. Kershaw, A. P., & Strickland, K. M. (1990). A 10 year pollen trapping record from rainforest in northeastern Queensland, Australia. Review of Palaeobotany and Palynology, 64, 281–288.Google Scholar
  57. Kong, S., Punyasena, S. W., & Fowlkes, C. C. (2016). Spatially aware dictionary learning and coding for fossil pollen identification. Computer Vision for Microscopy Image Analysis (CVMI) Workshop, In 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google Scholar
  58. Legendre, P. L., & Birks, H. J. B. (2012). From classical to canonical ordination. In H. J. B. Birks, A. F. Lotter, S. Juggins & J. P. Smol (Eds.), Tracking Environmental Change Using Lake Sediments, Volume 5: Data Handling and Numerical Techniques (pp. 201–248). Dordrecht: SpringerGoogle Scholar
  59. Mander, L., & Punyasena, S. W. (2014). On the taxonomic resolution of pollen and spore records of Earth’s vegetation. International Journal of Plant Sciences, 175, 931–945.Google Scholar
  60. Mander, L., Wesseln, C. J., McElwain, J. C., & Punyasena, S. W. (2012). Tracking taphonomic regimes using chemical and mechanical damage of pollen and spores: an example from the Triassic-Jurassic mass extinction. PLoS ONE, 7, e49153.Google Scholar
  61. Mander, L., Li, M., Mio, M., Fowlkes, C. C., & Punyasena, S. W. (2013). Classification of grass pollen through the quantitative analysis of surface ornamentation and texture. Proceedings of the Royal Society B, 280, 20131905.Google Scholar
  62. Mayle, F. E., Beerling, D. J., Gosling, W. D., & Bush, M. B. (2004). Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum. Philosophical Transactions of the Royal Society B, 359, 499–514.Google Scholar
  63. Overpeck, J. T., Webb, R. S., & Webb, T. III. (1992). Mapping eastern North American vegetation change of the past 18 ka: no-analogues and the future. Geology, 20, 1071–1074Google Scholar
  64. Paciorek, C. J., & McLachlan, J. S. (2009). Mapping ancient forests: Bayesian inference for spatio-temporal trends in forest composition using the fossil pollen proxy record. Journal of the American Statistical Association, 104, 608–622.Google Scholar
  65. Pedersen, M. W., Ruter, A., Schweger, C., Friebe, H., Staff, R. A., Kjeldsen, K. K., et al. (2016). Postglacial viability and colonization in North America’s ice-free corridor. Nature, 537, 45–49.Google Scholar
  66. Playford, G., & Dettmann, M. E. (1996). Spores. In J. Jansonius & D. C. McGregor (Eds.), Palynology: Principles and Applications (American Association of Stratigraphic Palynologists Foundation), vol. 1. (pp. 227–260). Salt Lake City: Publishers PressGoogle Scholar
  67. Poort, R. J., Visscher, H., & Dilcher, D. L. (1996). Zoidogamy in fossil gymnosperms: the centenary of a concept, with special reference to prepollen of late Paleozoic conifers. Proceedings of the National Academy of Sciences, USA, 93, 11713–11717.Google Scholar
  68. Potonie, R. (1934). Zur mikrobotanik der Kohlen und ihrer Verwandten. I. Zur Morphologie der fossilen pollen und sporen. Arbeiten des Instituts fur Paläobotanik und Petrographie der Brennsteine, 45–125.Google Scholar
  69. Prentice, I. C. (1985). Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quaternary Research, 23, 76–86.Google Scholar
  70. Prentice, I. C., & Webb III, T. (1986). Pollen percentages, tree abundances and the Fagerlind effect. Journal of Quaternary Science, 1, 35–43.Google Scholar
  71. Prentice, I. C., & Webb III, T. (1998). BIOME 6000: reconstructing global mid‐Holocene vegetation patterns from palaeoecological records. Journal of Biogeography, 25, 997–1005.Google Scholar
  72. Prentice, I. C., Berglund, B. E., & Olsson, T. (1987). Quantitative forest-composition sensing characteristics of pollen samples from Swedish lakes. Boreas, 16, 43–54.Google Scholar
  73. Prentice, C., Guiot, J., Huntley, B., Jolly, D., & Cheddadi, R. (1996). Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Climate Dynamics, 12, 185–194.Google Scholar
  74. Punt, W. (1986). Functional factors influencing pollen form. In S. Blackmore & I. K. Ferguson (Eds.), Pollen and spores: Form and function. London, UK: Academic Press.Google Scholar
  75. Punt, W., Blackmore, S., Hoen, P. P., & Stafford, P. (2003). Preface to the northwest European pollen flora VIII. Review of Palaeobotany and Palynology, 123, vii–ix.Google Scholar
  76. Punt, W., Hoen, P. P., Blackmore, S., Nilsson, S., & Le Thomas, A. (2007). Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology, 143, 1–81.Google Scholar
  77. Punyasena, S. W., Mayle, F. E., & McElwain, J. C. (2008). Quantitative estimates of glacial and Holocene temperature and precipitation change in lowland Amazonian Bolivia. Geology, 36, 667–670.Google Scholar
  78. Punyasena, S. W., Jaramillo, C., de la Parra, F., & Du, Y. (2012a). Probabilistic correlation of single stratigraphic samples: a generalized approach for biostratigraphic data. AAPG Bulletin, 96, 235–244.Google Scholar
  79. Punyasena, S. W., Tcheng, D. K., Wesseln, C., & Mueller, P. G. (2012b). Classifying black and white spruce using layered machine learning. New Phytologist, 196, 937–944.Google Scholar
  80. Raven, P. H., Evert, R. F., & Eichhorn, S. E. (2005). Biology of Plants. New York: W. H. Freeman and Company Publishers.Google Scholar
  81. Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., et al. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55, 1869–1887.Google Scholar
  82. Rothwell, G. W. (1972). Evidence of pollen tubes in Paleozoic pteridosperms. Science, 175, 772–774.Google Scholar
  83. Roubik, D. W., & Moreno, J. E. (1991). Pollen and spores of Barro Colorado Island. St. Louis, Missouri: Missouri Botanical Garden.Google Scholar
  84. Rudall, P. J., & Bateman, R. M. (2007). Developmental bases for key innovations in the seed-plant microgametophyte. Trends in Plant Science, 12, 318–326.Google Scholar
  85. Sachs, H. M., Webb III, T., & Clark, D. R. (1977). Paleoecological transfer functions. Annual Review of Earth and Planetary Sciences, 5, 159–178Google Scholar
  86. Schoene, B., Geux, J., Bartolini, A., Schaltegger, U., & Blackburn, T. J. (2010). Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology, 38, 387–390.Google Scholar
  87. Scott, L., & Bonnefille, R. (1986). A search for pollen from the hominid deposits of Kromdraai, Sterkfontein and Swartkrans: some problems and preliminary results. South African Journal of Science, 82, 380–382.Google Scholar
  88. Scott, L., Marais, E., & Brook, G. A. (2004). Fossil hyrax dung and evidence of Late Pleistocene and Holocene vegetation types in the Namib Desert. Journal of Quaternary Science, 19, 829–832.Google Scholar
  89. Seddon, A. W. R. (2012). Paleoecology. In D. Gibson (Ed.), Oxford bibliographies online: Ecology. New York: Oxford University Press.Google Scholar
  90. Sivaguru, M., Mander, L., Fried, G., & Punyasena, S. W. (2012). Capturing the surface texture and shape of pollen: a comparison of microscopy techniques. PLoS ONE, 7, e39129.a.Google Scholar
  91. Sivaguru, M., Urban, M. A., Fried, G., Wesseln, C. J., Mander, L., & Punyasena, S. W. (2018). Comparative performance of Airyscan and structured illumination superresolution microscopy in the study of the surface texture and 3D shape of pollen. Microscopy Research and Technique, 81, 101–114.Google Scholar
  92. Strother, P. K., Traverse, A., & Vecoli, M. (2015). Cryptospores from the Hanadir Shale Member of the Qasim Formation, Ordovician (Darrriwillian) of Saudi Arabia: taxonomy and systematics. Review of Palaeobotany and Palaeoecology, 212, 97–110.Google Scholar
  93. Sugita, S. (1993). A model of pollen source area for an entire lake surface. Quaternary Research, 39, 239–244.Google Scholar
  94. Sugita, S. (1994). Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. Journal of Ecology, 82, 881–897.Google Scholar
  95. Tauber, H. (1967). Investigations of the mode of transfer of pollen in forested areas. Review of Palaeobotany and Palynology, 3, 277–286.Google Scholar
  96. Taylor, T. N., Taylor, E. L., & Krings, M. (2009). Paleobotany: The biology and evolution of fossil plants (2nd ed.). Amsterdam: Elsevier.Google Scholar
  97. Tcheng, D. K., Nayak, A. K., Fowlkes, C. C., & Punyasena, S. W. (2016). A visual recognition software application for binary classification and its application to spruce pollen identification. PLoS ONE, 11, e0148879.Google Scholar
  98. Thompson, R. (1980). Use of the word “influx” in paleolimnological studies. Quaternary Research, 14, 269–270.Google Scholar
  99. Traverse, A. (2007). Paleopalynology (2nd ed.). The Netherlands: Springer.Google Scholar
  100. von Post, L. (1967[1916]). Forest tree pollen in Swedish Peat Bog Deposits. Pollen et Spores, 9, 378–401. Translation by M. B. Davis & K. Fægri of: von Post, L. 1916. Om skogsträdpollen i sydsvenska torfmosselagerföljder (foredragsreferat). Geolgiska Föereningen i Stockholm. Föerhandlingar, 38, 384–390.Google Scholar
  101. Webb III, T. (1974). Corresponding patterns of pollen and vegetation in Lower Michigan: a comparison of quantitative data. Ecology, 55, 17–28Google Scholar
  102. Willis, K. J., & McElwain, J. C. (2002). The Evolution of Plants. Oxford: Oxford University Press.Google Scholar
  103. Wodehouse, R. P. (1935). Pollen grains. New York: McGraw-Hill.Google Scholar
  104. Wright, H. E. (1967). The use of surface samples in Quaternary pollen analysis. Review of palaeobotany and palynology, 2, 321–330.Google Scholar
  105. Williams, J. W. (2003). Variations in tree cover in North America since the last glacial maximum. Global and Planetary Change, 35, 1–23.Google Scholar
  106. Wright, Jr., H. E., Mann, D. H., & Glaser, P. H. (1984). Piston corers for peat and lake sediments. Ecology, 65, 657–659Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environment, Earth and EcosystemsThe Open UniversityMilton KeynesUK
  2. 2.Department of Plant BiologyUniversity of IllinoisUrbanaUSA

Personalised recommendations