Advertisement

The Role of Continental Trace Fossils in Cenozoic Paleoenvironmental and Paleoecological Reconstructions

  • Daniel HembreeEmail author
Chapter
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Abstract

Trace fossils are the preserved remains of burrows, tracks, trails, nests, borings, or any other record of the behavioral interaction between an organism and a substrate. This chapter reviews the significance of trace fossils to paleoenvironmental and paleoecological studies with an emphasis on their application to the interpretation of Cenozoic continental deposits. Topics include the behavioral and environmental significance of trace fossils, methods utilized in studying trace fossils in outcrop and core, as well as analogous traces of extant organisms, and the strengths, biases, and limitations of trace-fossil data and analyses. The utility of continental trace fossils to paleoecological, paleoenvironmental, and paleoclimatic interpretations are illustrated by two case studies of continental depositional environments from the Eocene-Oligocene and Miocene of North America. Future areas of research with trace fossils then are discussed including experimental and field research with modern organisms and digitization of both modern and ancient traces.

Keywords

Ichnofossils Paleoecology Ichnology 

Notes

Acknowledgments

I thank Andy Rindsberg and three anonymous reviewers for their helpful comments and suggestions that greatly improved this chapter. I also thank the editors for their invitation to contribute a chapter to this volume.

References

  1. Aber, J. D., & Melillo, J. M. (2001). Terrestrial ecosystems. San Diego: Harcourt Academic Press.Google Scholar
  2. Ahlbrandt, T. S., Andrews, S., & Gwynne, D. T. (1978). Bioturbation in eolian deposits. Journal of Sedimentary Petrology, 48, 839–848.Google Scholar
  3. Atkinson, R. J. A. (1986). Mud-dwelling megafauna of the Clyde Sea area. Royal Society of Edinburgh Proceedings, 90B, 351–361.Google Scholar
  4. Baucon, A., Bordy, E., Brustur, T., Buatois, L. A., Cunningham, T., De, C., et al. (2012). A history of ideas in ichnology. In D. Knaust & R. G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments (pp. 3–44). Amsterdam: Elsevier.Google Scholar
  5. Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H. D., & Wing, S. L. (1992). Terrestrial ecosystems through time. Chicago: University of Chicago Press.Google Scholar
  6. Bellosi, E. S., & González, M. G. (2010). Paleosols of the middle Cenozoic Sarmiento Formation, central Patagonia. In R. H. Madden, A. A. Carlini, M. C. Vucetich & R. F. Kay (Eds.), The paleontology of Gran Barranca. Evolution and environmental change through the middle Cenozoic of Patagonia (pp. 293–305). Cambridge: Cambridge University Press.Google Scholar
  7. Bellosi, E. S., Laza, J. H., Victoria Sánchez, M., & Genise, J. F. (2010). Ichnofacies analysis of the Sarmiento Formation (middle Eocene-early Miocene) at Gran Barranca, central Patagonia. In R. H. Madden, A. A. Carlini, M. C. Vucetich & R. F. Kay (Eds.), The paleontology of Gran Barranca. Evolution and environmental change through the Middle Cenozoic of Patagonia (pp. 306–316). Cambridge: Cambridge University Press.Google Scholar
  8. Bertling, M., Braddy, S. J., Bromley, R. G., Demathiey, G. R., Genise, J., Mikulas, R., et al. (2006). Names for trace fossils: a uniform approach. Lethaia, 39, 265–286.Google Scholar
  9. Birkeland, P. W. (1999). Soils and geomorphology. New York: Oxford University Press.Google Scholar
  10. Bowen, J., & Hembree, D. (2014). Neoichnology of two spirobolid millipedes: improving the understanding of the burrows of soil detritivores. Palaeontologia Electronica, 17, 1–48.Google Scholar
  11. Bown, T. M., & Laza, J. H. (1990). A Miocene termite nest from southern Argentina and its paleoclimatological implications. Ichnos, 1, 73–79.Google Scholar
  12. Bromley, R. G. (1996). Trace fossils: Biology, taphonomy, and applications. London: Chapman and Hall.Google Scholar
  13. Bromley, R. G., & Asgaard, U. (1975). Sediment structures produced by a spatangoid echinoid: a problem of preservation. Bulletin of the Geological Society of Denmark, 24, 261–281.Google Scholar
  14. Bromley, R. G., & Ekdale, A. A. (1986). Composite ichnofabrics and tiering of burrows. Geological Magazine, 123, 59–65.Google Scholar
  15. Bromley, R. G., & Frey, R. W. (1974). Redescription of the trace fossil Gyrolithes and taxonomic evaluation of Thalassinoides, Ophiomorpha, Spongeliomorpha. Bulletin of the Geological Society of Denmark, 23, 311–335.Google Scholar
  16. Buatois, L. A., & Mángano, M. G. (2004). Animal-substrate interactions in freshwater environments: applications of ichnology in facies and sequence stratigraphic analysis of fluvio-lacustrine successions. In D. McIlroy (Ed.), The applications of ichnology to palaeoenvironmental and stratigraphic analysis (pp. 311–334). London: Geological Society of London, Special Publication 228.Google Scholar
  17. Buol, S. W., Southard, R. J., Graham, R. C., & McDaniel, P. A. (2003). Soil genesis and classification. Ames: Iowa State Press.Google Scholar
  18. Butler, D. R. (1995). Zoogeomorphology: Animals as geomorphic agents. Cambridge: Cambridge University Press.Google Scholar
  19. Buynevich, I. V. (2011). Buried tracks: ichnological applications of high-frequency georadar. Ichnos, 18, 189–191.Google Scholar
  20. Buynevich, I. V., Curran, H. A., Wiest, L. A., Bentley, A. P. K., Kadurin, S. V., Seminack, C. T., et al. (2014). Near-surface imaging (GPR) of biogenic structures in siliciclastic, carbonate, and gypsum dunes. In D. I. Hembree, B. F. Platt & J. J. Smith (Eds.), Experimental approaches to understanding fossil organisms: Lessons from the living (pp. 405–418). Dordrecht: Springer.Google Scholar
  21. Cadée, G. C., & Goldring, R. (2007). The Wadden Sea, cradle of invertebrate ichnology. In W. Miller III (Ed.), Trace fossils: Concepts, problems, prospects (pp. 3–13). Amsterdam: Elsevier.Google Scholar
  22. Cambefort, Y., & Hanski, I. (1991). Dung beetle population biology. In I. Hanski & Y. Cambefort (Eds.), Dung beetle ecology (pp. 36–50). Princeton: Princeton University Press.Google Scholar
  23. Cantil, L. F., Sánchez, M. V., Sarzetti, L., Molina, A., & Genise, J. F. (2015). Nests and brood balls of Coprophanaeus (Coprophanaeus) cyanescens (Olsoufieff, 1924) (Coleoptera: Scarabaeidae: Scarabaeinae). The Coleopterists Bulletin, 69, 153–158.Google Scholar
  24. Catena, A., & Hembree, D. I. (2014). Biogenic structures of burrowing skinks: neoichnology of Mabuya mutifasciata (Squamata: Scincidae). In D. I. Hembree, B. F. Platt & J. J. Smith (Eds.), Experimental approaches to understanding fossil organisms: Lessons from the living (pp. 343–369). Dordrecht: Springer.Google Scholar
  25. Counts, R. R., & Hasiotis, S. T. (2009). Neoichnological experiments with masked chafer beetles (Coleoptera: Scarabaeidae): implications for backfilled continental trace fossils. PALAIOS, 24, 74–91.Google Scholar
  26. Dashtgard, S. E., & Gingras, M. K. (2005). Facies architecture and ichnology of recent salt-marsh deposits: Waterside Marsh, New Brunswick, Canada. Journal of Sedimentary Research, 75, 596–607.Google Scholar
  27. Gibert, J. M. de, & Saez, A. (2009). Paleohydrological significance of trace fossil distribution in Oligocene fluvial-fan-to-lacustrine systems of the Ebro Basin, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 272, 162–175.Google Scholar
  28. Dold, P., & Prothero, D. (2003). Magnetic stratigraphy of the lower-middle Miocene Pawnee Creek and Martin Canyon formations, northeastern Colorado. Journal of Vertebrate Paleontology, 23, 46.Google Scholar
  29. Doody, J. S., James, H., Ellis, R., Gibson, N., Raven, M., Mahony, S., et al. (2014). Cryptic and complex nesting in the yellow-spotted monitor, Varanus panoptes. Journal of Herpetology, 48, 363–370.Google Scholar
  30. Doody, J. S., James, H., Colyvas, K., McHenry, C. R., & Clulow, S. (2015). Deep nesting in a lizard, déjà vu devil’s corkscrew: first helical reptile burrow and deepest vertebrate nest. Biological Journal of the Linnean Society, 116, 13–26.Google Scholar
  31. Doonan, T. J., & Stout, I. J. (1994). Effects of gopher tortoise (Gopherus polyphemus) body size on burrow structure. The American Midland Naturalist, 131, 273–280.Google Scholar
  32. Droser, M. L., & Bottjer, D. J. (1986). A semiquantitative field classification of ichnofabric. Journal of Sedimentary Petrology, 56, 558–559.Google Scholar
  33. Dzenowski, N., & Hembree, D. I. (2014). Quantifying vertebrate biogenic structures using modern analogs: the neoichnology of ambystomatid salamanders. In D. I. Hembree, B. F. Platt & J. J. Smith (Eds.), Experimental approaches to understanding fossil organisms: Lessons from the living (pp. 305–342). Dordrecht: Springer.Google Scholar
  34. Ekdale, A. A. (1985). Paleoecology of the marine endobenthos. Palaeogeography, Palaeoclimatology, Palaeoecology, 50, 63–81.Google Scholar
  35. Ekdale, A. A., & Berger, W. H. (1978). Deep-sea ichnofacies: modern organism traces on land and in pelagic carbonates of the western equatorial Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology, 23, 263–278.Google Scholar
  36. Ekdale, A. A., Bromley, R. G., & Pemberton, S. G. (1984). Ichnology, trace fossils in sedimentology and stratigraphy. Society of Economic Paleontologists and Mineralogists, Short Course Notes, 15.Google Scholar
  37. Elmes, G. W. (1991). Ant colonies and environmental disturbance. In P. S. Meadows & A. Meadows (Eds.), The environmental impact of burrowing animals and animal burrows: Symposia of the Zoological Society of London, 63 (pp. 15–32). Oxford: Clarendon Press.Google Scholar
  38. Farrow, G. E. (1975). Techniques for the study of fossil and recent traces. In R. W. Frey (Ed.), The study of trace fossils: A synthesis of principles, problems, and procedures in ichnology (pp. 537–554). Berlin: Springer.Google Scholar
  39. Fluegeman, R. H. (2003). Late Eocene-early Oligocene benthic foraminifera in the Gulf Coastal Plain: regional vs. global influences. In D. R. Prothero, L. C. Ivany & E. A. Nesbitt (Eds.), From greenhouse to icehouse: The marine Eocene-Oligocene transition (pp. 282–293). New York: Columbia University Press.Google Scholar
  40. Frakes, L. A., Francis, J. E., & Syktus, J. I. (1992). Climate modes of the Phanerozoic: The history of the Earth’s climate over the past 600 million years. Cambridge: Cambridge University Press.Google Scholar
  41. Frey, R. W. (1968). The Lebensspuren of some common marine invertebrates near Beaufort, North Carolina. 1, Pelecypod burrows. Journal of Paleontology, 42, 570–574.Google Scholar
  42. Frey, R. W. (1970). The Lebensspuren of some common marine invertebrates near Beaufort, North Carolina. 2, Anemone burrows. Journal of Paleontology, 44, 308–311.Google Scholar
  43. Frey, R. W. (1973). Concepts in the study of biogenic sedimentary structures. Journal of Sedimentary Petrology, 43, 6–19.Google Scholar
  44. Frey, R. W. (1975). The realm of ichnology, its strengths and limitations. In R. W. Frey (Ed.), The study of trace fossils: A synthesis of principles, problems, and procedures in ichnology (pp. 13–38). Berlin: Springer.Google Scholar
  45. Frey, R. W. (1978). Behavioral and ecological implications of trace fossils. In P. B. Bassan (Ed.), Trace fossil concepts (pp. 43–66). Tulsa: Society of Economic Paleontologists and Mineralogists, Short Course Notes, 5.Google Scholar
  46. Frey, R. W., & Pemberton, S. G. (1985). Biogenic structures in outcrops and cores. I. Approaches to ichnology. Bulletin of Canadian Petroleum Geology, 33, 72–115.Google Scholar
  47. Frey, R. W., & Pemberton, S. G. (1987). The Psilonichnus ichnocoenose and its relationship to adjacent marine and nonmarine ichnocoenoses along the Georgia coast. Bulletin of Canadian Petroleum Geology, 13, 333–357.Google Scholar
  48. Frey, R. W., Howard, J. D., & Pryor, W. A. (1978). Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 23, 199–229.Google Scholar
  49. Frey, R. W., Curran, H. A., & Pemberton, S. G. (1984). Tracemaking activities of crabs and their environmental significance: the ichnogenus Psilonichnus. Journal of Paleontology, 58, 333–350.Google Scholar
  50. Galbreath, E. C. (1953). A contribution to the Tertiary geology and paleontology of northeastern Colorado. University of Kansas Paleontological Contributions, Vertebrata, 4.Google Scholar
  51. Genise, J. F., & Bown, T. M. (1994). New Miocene scarabeid and hymenopterous nests and early Miocene (Santacrucian) paleoenvironments, Patagonian Argentina. Ichnos, 3, 107–111.Google Scholar
  52. Genise, J. F. Bellosi, E. S., & Gonzalez, M. G. (2004). An approach to the description and interpretation of ichnofabrics in palaeosols. In D. McIlroy (Ed.), The applications of ichnology to palaeoenvironmental and stratigraphic analysis (pp. 355–382). London: The Geological Society of London, Special Publication, 228.Google Scholar
  53. Genise, J. F., Cantil, L. F., Dinghi, P. A., Sánchez, M. V., & Sarzetti, L. (2013). The aestivation chamber of the giant earthworm Glossoscolex bergi (Glossoscolecidae) in the subtropical rainforest of Misiones (Argentina). Ichnos, 20, 1161119.Google Scholar
  54. Genise, J. F., Melchor, R. N., Bellosi, E. S., Gonzalez, M. G., & Krause, M. (2007). New insect pupation chambers (pupichnia) from the Upper Cretaceous of Patagonia, Argentina. Cretaceous Research, 28, 545–559.Google Scholar
  55. Gingras, M. K., Pickerill, R. K., & Pemberton, S. G. (2002a). Resin casts of modern burrows provide analogs for composite trace fossils. PALAIOS, 17, 206–211.Google Scholar
  56. Gingras, M. K., Macmillian, B., Balcom, B. J., Saunders, T., & Pemberton, S. G. (2002b). Using magnetic resonance imaging and petrographic techniques to understand the textural attributes and porosity distribution in Macaronichnus-burrowed sandstone. Journal of Sedimentary Research, 72, 552–558.Google Scholar
  57. Gingras, M. K., MacEachern, J. A., & Pickerill, R. K. (2004). Modern perspectives on the Teredolites ichnofacies: observations from Willapa Bay, Washington. PALAIOS, 19, 79–88.Google Scholar
  58. Gingras, M. K., Bann, K. L, MacEachern, J. A., Waldron, J., & Pemberton, S. G. (2007a). A conceptual framework for the application of trace fossils. In J. A. MacEachern, K. L. Bann, M. K. Gingras & S. G. Pemberton (Eds.), Applied Ichnology (pp. 1–26). Tulsa: Society for Sedimentary Geology.Google Scholar
  59. Gingras, M. K., Lalond, S. V., Amskold, L., & Konhauser, K. O. (2007b). Wintering chironomids mine oxygen. PALAIOS, 22, 433–438.Google Scholar
  60. Glinski, J., & Lipiec, J. (1990). Soil physical conditions and plant roots. Boca Raton: CRC Press Inc.Google Scholar
  61. Gobetz, K. E. (2005). Claw impressions in the walls of modern mole (Scalopus aquaticus) tunnels as a means to identify fossil burrows and interpret digging movements. Ichnos, 12, 227–231.Google Scholar
  62. Halfen, A. F., & Hasiotis, S. T. (2010). Neoichnological study of the traces and burrowing behaviors of the western harvester ant Pognomyrmex occidentalis (Insecta: Hymenoptera: Formicidea): paleopedogenic and paleoecologic implications. PALAIOS, 25, 703–720.Google Scholar
  63. Halffter, G., & Matthews, E. G. (1966). The natural history of dung beetles of the subfamily Scarabaeninae (Coleoptera, Scarabaenidae). Folia Entomologica Mexicana, 12/13, 1–312.Google Scholar
  64. Hasiotis, S. T. (2002). Continental trace fossils. Tulsa: Society for Sedimentary Geology.Google Scholar
  65. Hasiotis, S. T. (2003). Complex ichnofossils of solitary and social soil organisms: understanding their evolution and roles in terrestrial paleoecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 192, 259–320.Google Scholar
  66. Hasiotis, S. T. (2004). Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses. Sedimentary Geology, 167, 177–268.Google Scholar
  67. Hasiotis, S. T. (2007). Continental ichnology: fundamental processes and controls on trace fossil distribution. In W. Miller III (Ed.), Trace fossils: Concepts, problems, prospects (pp. 268–284). Amsterdam: Elsevier.Google Scholar
  68. Hasiotis, S. T., & Bown, T. M. (1992). Invertebrate trace fossils: the backbone of continental ichnology. In C. Maples & R. West (Eds.), Trace fossils: Their paleobiological aspects (pp. 64–104). Paleontological Society Short Course, Number 5.Google Scholar
  69. Hasiotis, S. T., Kraus, M. J., & Demko, T. M. (2007). Climatic controls on continental trace fossils. In W. Miller III (Ed.), Trace fossils: Concepts, problems, prospects (pp. 166–189). Amsterdam: Elsevier.Google Scholar
  70. Hembree, D. I. (2009). Neoichnology of burrowing millipedes: linking modern burrow morphology, organism behavior, and sediment properties to interpret continental ichnofossils. PALAIOS, 24, 425–439.Google Scholar
  71. Hembree, D. I. (2013). Neoichnology of the whip scorpion Mastigoproctus giganteus: complex burrows of predatory terrestrial arthropods. PALAIOS, 28, 141–162.Google Scholar
  72. Hembree, D. I. (2014). Large, complex burrows of terrestrial invertebrates: neoichnology of Pandinus imperator. In D. I. Hembree, B. F. Platt & J. J. Smith (Eds.), Experimental approaches to understanding fossil organisms: Lessons from the living (pp. 229–263). Dordrecht: Springer.Google Scholar
  73. Hembree, D. I., & Hasiotis, S. T. (2006). The identification and interpretation of reptile ichnofossils in paleosols through modern studies. Journal of Sedimentary Research, 76, 575–588.Google Scholar
  74. Hembree, D. I., & Hasiotis, S. T. (2007a). Paleosols and ichnofossils of the White River Formation of Colorado: insight into soil ecosystems of the North American Midcontinent during the Eocene-Oligocene transition. PALAIOS, 22, 123–142.Google Scholar
  75. Hembree, D. I., & Hasiotis, S. T. (2007b). Biogenic structures produced by sand-swimming snakes: a modern analog for interpreting continental ichnofossils. Journal of Sedimentary Research, 77, 389–397.Google Scholar
  76. Hembree, D. I., & Hasiotis, S. T. (2008). Miocene vertebrate and invertebrate burrows defining compound paleosols in the Pawnee Creek Formation, Colorado, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 270, 349–365.Google Scholar
  77. Hembree, D. I., Johnson, L. M., & Tenwalde, R. W. (2012). Neoichnology of the desert scorpion Hadrurus arizonensis: burrows to biogenic cross lamination. Palaeontologica Electronica, 15, 1–34.Google Scholar
  78. Hickman, C. S. (2003). Evidence for abrupt Eocene-Oligocene molluscan faunal change in the Pacific Northwest. In D. R. Prothero, L. C. Ivany & E. A. Nesbitt (Eds.), From greenhouse to icehouse: The marine Eocene-Oligocene transition (pp. 71–87). New York: Columbia University Press.Google Scholar
  79. Hils, J. M., & Hembree, D. I. (2015). Neoichnology of the burrowing spiders Gorgyrella inermis (Mygalomorphae: Idiopidae) and Hogna lenta (Araneomorphae: Lycosidae). Palaeontologica Electronica, 18, 1–62.Google Scholar
  80. Hole, F. D. (1981). Effects of animals on soil. Geoderma, 25, 75–112.Google Scholar
  81. Howard, J. D. (1978). Sedimentology and trace fossils. In P. B. Basan (Ed.), Trace fossil concepts (pp. 11–42). Society for Sedimentary Geology Short Course No. 5.Google Scholar
  82. Hunt, A. P., Chin, K., & Lockley, M. G. (1994). The paleobiology of vertebrate coprolites. In S. K. Donovan (Ed.), The paleobiology of trace fossils (pp. 221–240). Baltimore: John Hopkins University Press.Google Scholar
  83. Hutchinson, J. H. (1992). Western North American reptile and amphibian record across the Eocene/Oligocene boundary and its climatic implications. In D. R. Prothero & W. A. Berggren (Eds.), Eocene-Oligocene climatic and biotic evolution (pp. 451–463). Princeton: Princeton University Press.Google Scholar
  84. Ivany, L. C., Lohmann, K. C., & Patterson, W. P. (2003). Paleogene temperature history of the U.S. Gulf Coast Plain inferred from ∂18 O of fossil otoliths. In D. R. Prothero, L. C. Ivany & E. A. Nesbitt (Eds.), From greenhouse to icehouse: The marine Eocene-Oligocene transition (pp. 232–251). New York: Columbia University Press.Google Scholar
  85. Jackson, T. P. (2000). Adaptation to living in an open arid environment: lessons from the burrow structure of the two southern African whistling rats, Parotomys brantsii and P. littledalei. Journal of Arid Environments, 46, 345–355.Google Scholar
  86. Johnson, L. M., & Hembree, D. I. (2015). Understanding anuran burrows: neoichnology of the Eastern spadefoot toad, Scaphiopus holbrooki. Palaeontologica Electronica, 18, 1–29.Google Scholar
  87. Kanazawa, K. (1992). Adaptation of test shape for burrowing and locomotion in spatangoid echinoids. Palaeontology, 35, 733–750.Google Scholar
  88. Kinlaw, A. (1999). A review of burrowing by semi-fossorial vertebrates in arid environments. Journal of Arid Environments, 41, 127–145.Google Scholar
  89. Kinlaw, A. E., & Grasmueck, M. (2012). Evidence for and geomorphologic consequences of a reptilian ecosystem engineer: the burrowing cascade initiated by the gopher tortoise. Geomorphology, 157–158, 108–121.Google Scholar
  90. Knaust, D. (2012a). Methodology and techniques. In D. Knaust & R. G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments (pp. 245–271). Amsterdam: Elsevier.Google Scholar
  91. Knaust, D. (2012b). Trace-fossil systematics. In D. Knaust & R. G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments (pp. 79–102). Amsterdam: Elsevier.Google Scholar
  92. Krapovickas, V. (2012). Deposits of the Santa Cruz Formation (late early Miocene): paleohydrologic and paleoclimatic significance. In S. F. Vizcaíno, R. F. Kay & M. S. Bargo (Eds.), Early Miocene paleobiology in Patagonia: High-latitude paleocommunities of the Santa Cruz Formation (pp. 91–103). Cambridge: Cambridge University Press.Google Scholar
  93. Krapovickas, V., Ciccioli, P. L., Mángano, M. G., Marsicano, C. A., & Limarino, C. O. (2009). Paleobiology and paleoecology of an arid-semiarid Miocene South American ichnofauna in anastomosed fluvial deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, 284, 129–152.Google Scholar
  94. Kraus, M. J. (1997). Lower Eocene alluvial paleosols: pedogenic development, stratigraphic relationships, and paleosol/landscape associations. Palaeogeography, Palaeoclimatology, Palaeoecology, 129, 387–406.Google Scholar
  95. Kraus, M. J. (1999). Paleosols in clastic sedimentary rocks: their geologic applications. Earth Science Reviews, 47, 41–70.Google Scholar
  96. Kraus, M. J., & Hasiotis, S. T. (2006). Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from Paleogene paleosols, Bighorn Basin, Wyoming. Journal of Sedimentary Research, 76, 633–646.Google Scholar
  97. Lavelle, P., & Spain, A. (2001). Soil ecology. Dordrecht: Kluwer Academic Publishers.Google Scholar
  98. Lawfield, A. M. W., & Pickerell, R. K. (2006). A novel contemporary fluvial ichnocoenose: unionid bivalves and the Scoyenia-Mermia ichnofacies transition. PALAIOS, 21, 391–396.Google Scholar
  99. Lee, K. E. (1985). Earthworms: Their ecology and relationships with soils and land use. Orlando: Academic Press.Google Scholar
  100. Leopold, E. B., & Denton, M. F. (1987). Comparative age of grassland and steppe east and west of the northern Rocky Mountains. Annals of the Missouri Botanical Gardens, 74, 841–867.Google Scholar
  101. Leopold, E. B., Liu, G., & Clay-Poole, S. (1992). Low-biomass vegetation in the Oligocene? In D. R. Prothero & W. A. Berggren (Eds.), Eocene-Oligocene climatic and biotic evolution (pp. 399–420). Princeton: Princeton University Press.Google Scholar
  102. MacEachern, J. A., Bann, K. L., Pemberton, S. G., & Gingras, M. K. (2007a). The ichnofacies paradigm: high-resolution paleoenvironmental interpretation of the rock record. In J. A. MacEachern, K. L. Bann, M. K. Gingras & S. G. Pemberton (Eds.), Applied Ichnology (pp. 27–64). Tulsa: Society for Sedimentary Geology.Google Scholar
  103. MacEachern, J. A., Pemberton, S. G., Bann, K. L., & Gingras, M. K. (2007b). Departures from the archetypal ichnofacies: effective recognition of physico-chemical stresses in the rock record. In J. A. MacEachern, K. L. Bann, M. K. Gingras & S. G. Pemberton (Eds.), Applied Ichnology (pp. 65–93). Tulsa: Society for Sedimentary Geology.Google Scholar
  104. Melchor, R. N., Genise, J. F., & Miquel, S. E. (2002). Ichnology, sedimentology and paleontology of Eocene calcareous paleosols from a palustrine sequence, Argentina. PALAIOS, 17, 16–35.Google Scholar
  105. Melchor, R. N., Genise, J. F., Umazano, A. M., & Superina, M. (2012). Pink fairy armadillo meniscate burrows and ichnofabrics from Miocene and Holocene interdune deposits of Argentina: palaeoenvironmental and palaeoecological significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 350–352, 149–170.Google Scholar
  106. Mikuś, P., & Uchman, A. (2013). Beetle burrows with a terminal chamber: a contribution to the knowledge of the trace fossil Macanopsis in continental sediments. PALAIOS, 28, 403–413.Google Scholar
  107. Miller, K. G. (1992). Middle Eocene to Oligocene stable isotopes, climate, and deep-water history: the Terminal Eocene Event? In D. R. Prothero & W. A. Berggren (Eds.), Eocene-Oligocene climatic and biotic evolution (pp. 160–177). Princeton: Princeton University Press.Google Scholar
  108. Miller, K. G., Fairbanks, R. G., & Mountain, G. S. (1987). Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography, 2, 1–19.Google Scholar
  109. Mora, P., Miambi, E., Jiménez, J. J., Decaëns, T., & Rouland, C. (2005). Functional complement of biogenic structures produced by earthworms, termites, and ants in the neotropical savannas. Soil Biology and Biochemistry, 37, 1043–1048.Google Scholar
  110. M’rabet, S. M., Henaut, Y., Sepulveda, A., Rojo, R., Calme, S., & Geissen, V. (2007). Soil preference and burrow structure of an endangered tarantula, Brachypelma vagans (Mygalomorphae: Theraphosidae). Journal of Natural History, 41, 1025–1033.Google Scholar
  111. Mueller, P., & McCann, T. (2014). Ichnology of the Miocene Jaraba Formation, Almazan Basin, NE Spain–morphological characteristics and paleoenvironmental implications of distinct continental trace fossils. Neues Jahrbuch für Geologie und Paläontologie, 274, 55–71.Google Scholar
  112. Myers, J. A. (2003). Terrestrial Eocene-Oligocene vegetation and climate in the Pacific Northwest. In D. R. Prothero, L. C. Ivany & E. A. Nesbitt (Eds.), From greenhouse to icehouse: The marine Eocene-Oligocene transition (pp. 171–188). New York: Columbia University Press.Google Scholar
  113. Needham, S. J., Worden, R. H., & McIlroy, D. (2005). Experimental production of clay rims by macrobiotic sediment ingestion and excretion processes. Journal of Sedimentary Research, 75, 1028–1037.Google Scholar
  114. Neto de Carvalho, C., Baucon, A., & Canilho, S. (2015). ‘Meniscate burrow’ ichnoguild from the alluvial fan deposits of Sarzedas Basin (upper Miocene, Portugal). In D. McIlroy (Ed.), Ichnology: papers from ICHNIA III (pp. 51–61). Geological Association of Canada, Miscellaneous Publications 9.Google Scholar
  115. O’Geen, A. T., & Busacca, A. J. (2001). Faunal burrows as indicators of paleo-vegetation in eastern Washington, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 169, 23–37.Google Scholar
  116. O’Geen, A. T., McDaniel, P. A., & Busacca, A. J. (2002). Cicada burrows as indicators of paleosols in the inland Pacific Northwest. Soil Science Society of America Journal, 66, 1584–1586.Google Scholar
  117. Oleinik, A. E., & Marincovich Jr., L. (2003). Biotic response to the Eocene-Oligocene transition. In D. R. Prothero, L. C. Ivany & E. A. Nesbitt (Eds.) From greenhouse to icehouse: The marine Eocene-Oligocene transition (pp. 36–56). New York: Columbia University Press.Google Scholar
  118. Osgood, R. G., Jr. (1975). The paleontological significance of trace fossils. In R. W. Frey (Ed.), The study of trace fossils: A synthesis of principles, problems, and procedures in ichnology (pp. 87–108). Berlin: Springer.Google Scholar
  119. Pemberton, S. G., & Frey, R. W. (1985). The Glossifungites ichnofacies: modern examples from the Georgia coast, U.S.A. In H. A. Curran (Ed.), Biogenic structures: Their use in interpreting depositional environments (pp. 273–259). Society of Economic Paleontologists and Mineralogists, Special Publication 35.Google Scholar
  120. Pemberton, S. G., Spila, M., Pulham, A. J., Saunders, T., MacEachern, J. A., Robbins, D., & Sinclair, I. K. (2001). Ichnology and sedimentology of shallow to marginal marine systems: Ben Nevis and Avalon reservoirs, Jeanne d’Arc basin. Newfoundland: Geological Association of Canada, Short Course Notes, 15.Google Scholar
  121. Platt, B. F., & Hasiotis, S. T. (2012). Empirical determination of physical controls on megafaunal footprint formation through neoichnological experiments with elephants. PALAIOS, 27, 725–737.Google Scholar
  122. Platt, B. F., Hasiotis, S. T., & Hirmas, D. R. (2010). Use of low-cost multistripe laser triangulation (MLT) scanning technology for three-dimensional, quantitative paleoichnological and neoichnological studies. Journal of Sedimentary Research, 80, 590–610.Google Scholar
  123. Prothero, D. R., & Berggren, W. A. (1992). Eocene-Oligocene climatic and biotic evolution. Princeton: Princeton University Press.Google Scholar
  124. Prothero, D. R., & Whittlesey, K. E. (1998). Magnetic stratigraphy and biostratigraphy of the Orellan and Whitneyan land-mammal ages in the White River Group. In D. O. Terry Jr., H. E. LaGarry & R. M. Hunt (Eds.), Depositional environments, lithostratigraphy, and biostratigraphy of the White River and Arikaree Groups (late Eocene to early Miocene North America) (pp. 39–61). Geological Society of America, Special Paper, 325.Google Scholar
  125. Prothero, D. R., Ivany, L. C., & Nesbitt, E. A. (2003). From greenhouse to icehouse: The marine Eocene-Oligocene transition. New York: Columbia University Press.Google Scholar
  126. Ratcliffe, B. C., & Fagerstron, J. A. (1980). Invertebrate lebensspuren of Holocene floodplains: their morphology, origin, and paleoecological significance. Journal of Paleontology, 54, 614–630.Google Scholar
  127. Reynolds, T. D., & Wakkinen, W. L. (1987). Characteristics of the burrows of four species of rodents in undisturbed soils in southeastern Idaho. The American Midland Naturalist, 118, 245–250.Google Scholar
  128. Retallack, G. J. (1983). Late Eocene and Oligocene paleosols from Badlands National Park, South Dakota (Vol. 193). Boulder: Geological Society of America, Special Paper.Google Scholar
  129. Retallack, G. J. (1984). Trace fossils of burrowing beetles and bees in an Oligocene paleosol, Badlands National Park, South Dakota. Journal of Paleontology, 58, 571–592.Google Scholar
  130. Retallack, G. J. (1992). Paleosols and changes in climate and vegetation across the Eocene/Oligocene boundary. In D. R. Prothero & W. A. Berggren (Eds.), Eocene-Oligocene climatic and biotic evolution (pp. 382–398). Princeton: Princeton University Press.Google Scholar
  131. Retallack, G. J. (2001a). Cenozoic expansion of grasslands and global climatic cooling. Journal of Geology, 109, 407–426.Google Scholar
  132. Retallack, G. J. (2001b). Soils of the past. Oxford: Blackwell.Google Scholar
  133. Retallack, G. J. (2004). Late Oligocene bunch grassland and early Miocene sod grassland paleosols from central Oregon, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 207, 203–237.Google Scholar
  134. Retallack, G. J., Bestland, E. A., & Fremd, T. J. (2000). Eocene and Oligocene paleosols of central Oregon (Vol. 344). Boulder: Geological Society of America, Special Paper.Google Scholar
  135. Retallack, G. J., Orr, W. N., Prothero, D. R., Duncan, R. A., Kester, P. R., & Ambers, C. P. (2004). Eocene-Oligocene extinction and paleoclimatic change near Eugene, Oregon. Geological Society of America Bulletin, 116, 817–839.Google Scholar
  136. Rindsberg, A. K. (2012). Ichnotaxonomy: finding patterns in a welter of information. In D. Knaust & R. G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments (pp. 45–78). Amsterdam: Elsevier.Google Scholar
  137. Rodríguez-Tovar, F. J. (2007). Substrate firmness controlling nesting behavior of Bembix oculata (Hymenoptera, Bembicinae). In R. G. Bromley, L. A. Buatois, M. G. Mángano, J. F. Genise & R. N. Melchor (Eds.), Sediment-organism interactions: A multifaceted ichnology (pp. 353–359). Tulsa: Society for Sedimentary Geology.Google Scholar
  138. Sakagami, S. F., & Michener, C. D. (1962). The nest architecture of the sweat bees (Halictinae): A comparative study of behavior. Lawrence: University of Kansas Press.Google Scholar
  139. Sánchez, M. V., González, M. G., & Genise, J. F. (2010). Phytolith analysis of Coprinisphaera, unlocking dung beetle behaviour, herbivore diets and palaeoenvironments along the middle Eocene-early Miocene of Patagonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 285, 224–236.Google Scholar
  140. Sarzetti, L. C., Genise, J. F., & Sanchez, M. V. (2014). Nest architecture of Oxaea austere (Andrenidae, Oxaeinae) and its significance for the interpretation of Uruguayan fossil bee cells. Journal of Hymenoptera Research, 39, 59–70.Google Scholar
  141. Schäfer, W. (1972). Ecology and palaeoecology of marine environments. Edinburgh: Oliver and Boyd.Google Scholar
  142. Schaetzl, R., & Anderson, S. (2009). Soils: Genesis and geomorphology. Cambridge: Cambridge University Press.Google Scholar
  143. Seeland, D. (1985). Oligocene paleogeography of the northern Great Plains and adjacent mountains. In R. M. Flores & S. S. Kaplan (Eds.), Cenozoic paleogeography of the west-central United States (pp. 187–205). Denver: Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists.Google Scholar
  144. Seilacher, A. (1953). Studien zur Palichnologie. I. Über die Methoden der Palichnologie. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 96, 421–452.Google Scholar
  145. Seilacher, A. (1964). Biogenic sedimentary structures. In J. Imbire & N. Newell (Eds.), Approaches to paleoecology (pp. 296–316). New York: Wiley.Google Scholar
  146. Seilacher, A. (1967). Bathymetry of trace fossils. Marine Geology, 5, 413–428.Google Scholar
  147. Seilacher, A. (1978). Use of trace fossil assemblages for recognizing depositional environments. In P. B. Basan (Ed.), Trace fossil concepts (pp. 167–181). Tulsa: Society of Economic Paleontologists and Mineralogists.Google Scholar
  148. Seilacher, A. (1986). Evolution of behavior as expressed in marine trace fossils. In M. H. G. Nitecki & J. A. Kitchell (Eds.), Evolution of animal behavior: Palaeontological and field approaches (pp. 62–87). New York: Oxford University Press.Google Scholar
  149. Seilacher, A. (2007). Trace fossil analysis. Berlin: Springer.Google Scholar
  150. Seilacher, A., & Seilacher, E. (1994). Bivalvian trace fossils: a lesson from actuo-paleontology. Courier Forschungsinstitut Senckenberg, 169, 5–15.Google Scholar
  151. Shorthouse, D. J., & Marples, T. G. (1980). Observations on the burrow and associated behavior of the arid-zone scorpion Urodacus yaschenkoi (Birula). Australian Journal of Zoology, 28, 581–590.Google Scholar
  152. Smith, A. B., & Crimes, T. P. (1983). Trace fossils formed by heart urchins–a study of Scolicia and related traces. Lethaia, 16, 79–92.Google Scholar
  153. Smith, J. J., & Hasiotis, S. T. (2008). Traces and burrowing behaviors of the cicada nymph Cicadetta calliope: neoichnology and paleoecological significance of extant soil-dwelling insects. PALAIOS, 23, 503–513.Google Scholar
  154. Smith, J. J., Hasiotis, S. T., Kraus, M. J., & Woody, D. T. (2008a). Relationship of floodplain ichnocoenoses to paleopedology, paleohydrology, and paleoclimate in the Willwood Formation, Wyoming, during the Paleocene-Eocene Thermal Maximum. PALAIOS, 23, 683–699.Google Scholar
  155. Smith, J. J., Hasiotis, S. T., Woody, D. T., & Kraus, M. (2008b). Paleoclimatic implications of crayfish-mediated prismatic structures in paleosols of the Paleogene Willwood Formation, Bighorn Basin, Wyoming, U.S.A. Journal of Sedimentary Research, 78, 323–334.Google Scholar
  156. Stucky, R. K. (1992). Mammalian faunas in North America of Bridgerian to Early Arikareean “ages” (Eocene to Oligocene). In D. R. Prothero & W. A. Berggren (Eds.), Eocene-Oligocene climatic and biotic evolution (pp. 464–493). New Jersey: Princeton University Press.Google Scholar
  157. Sudd, J. H. (1967). An introduction to the behavior of ants. London: Edward Arnold.Google Scholar
  158. Sullivan, R. M., & Holman, J. A. (1996). Squamata. In D. R. Prothero & R. J. Emry (Eds.), The terrestrial Eocene-Oligocene transition in North America (pp. 354–372). New York: Cambridge University Press.Google Scholar
  159. Swinehart, J. B., Souders, V. L., Degraw, H. M., & Diffendal, R. F. (1985). Cenozoic paleogeography of western Nebraska. In R. M. Flores & S. S. Kaplan (Eds.), Cenozoic paleogeography of the west-central United States (pp. 209–229). Denver: Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists.Google Scholar
  160. Taylor, A. M., & Goldring, R. (1993). Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society of London, 150, 141–148.Google Scholar
  161. Taylor, A., Goldring, R., & Gowland, S. (2003). Analysis and application of ichnofabrics. Earth-Science Reviews, 60, 227–259.Google Scholar
  162. Tschinkel, W. R. (2003). Subterranean ant nests: trace fossils past and future. Palaeogeography, Palaeoclimatology, Palaeoecology, 192, 321–333.Google Scholar
  163. Uchman, A., & Pervesler, P. (2006). Surface lebensspuren produced by amphipods and isopods (crustaceans) from the Isonzo delta tidal flat, Italy. PALAIOS, 21, 384–390.Google Scholar
  164. van Donselaar-ten Bokkel Huinink, W. A. E. (1966). Structure, root systems, and periodicity of savanna plants and vegetation in northern Surinam. Amsterdam: North-Holland Publishing Company.Google Scholar
  165. Villani, M. G., Allee, L. L., Diaz, A., & Robbins, P. S. (1999). Adaptive strategies of edaphic arthropods. Annual Review of Entomology, 44, 233–256.Google Scholar
  166. Weaver, J. E. (1919). The ecological relations of roots. Washington: Carnegie Institution of Washington Publication.Google Scholar
  167. Williams, S. C. (1966). Burrowing activities of the scorpion Anuroctonus phaeodactylus (Wood) (Scorpionida: Vaejovidae). Proceedings of the California Academy of Sciences, 34, 419–428.Google Scholar
  168. Willis, E. R., & Roth, L. M. (1962). Soil and moisture relations of Scaptocoris divergins Troeschner (Hemiptera: Cynidae). Annals of the Entomological Society of America, 55, 21–32.Google Scholar
  169. Wolfe, J. A. (1992). Climatic, floristic, and vegetational changes across the Eocene/Oligocene boundary in North America. In D. R. Prothero & W. A. Berggren (Eds.), Eocene-Oligocene climatic and biotic evolution (pp. 421–436). New Jersey: Princeton University Press.Google Scholar
  170. Yancy, T. E., Elsik, W. C., & Sancay, R. H. (2003). The palynological record of late Eocene climate change, northwest Gulf of Mexico. In D. R. Prothero, L. C. Ivany & E. A. Nesbitt (Eds.), From greenhouse to icehouse: The marine Eocene-Oligocene transition (pp. 252–268). New York: Columbia University Press.Google Scholar
  171. Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 689–693.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Geological Sciences, 316 Clippinger LaboratoriesOhio UniversityAthensUSA

Personalised recommendations