Advertisement

An Articulating Statistical Shape Model of the Human Hand

  • Jeroen Van Houtte
  • Kristina Stanković
  • Brian G. Booth
  • Femke Danckaers
  • Véronique Bertrand
  • Frederik Verstreken
  • Jan Sijbers
  • Toon Huysmans
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 780)

Abstract

This paper presents a registration framework for the construction of a statistical shape model of the human hand in a standard pose. It brings a skeletonized reference model of an individual human hand into correspondence with optical 3D surface scans of hands by sequentially applying articulation-based registration and elastic surface registration. Registered surfaces are then fed into a statistical shape modelling algorithm based on principal component analysis. The model-building technique has been evaluated on a dataset of optical scans from 100 healthy individuals, acquired with a 3dMD scanning system. It is shown that our registration framework provides accurate geometric and anatomical alignment, and that the shape basis of the resulting statistical model provides a compact representation of the specific population. The model also provides insight into the anatomical variation of the lower arm and hand, which is useful information for the design of well-fitting products.

Keywords

Articulation-model Registration Human hand Statistical shape modelling 

Notes

Acknowledgments

This work was supported by the Research Foundation in Flanders (FWO SB) and the VLAIO PLATO-project. The authors would like to thank Vigo nv, More Institute vzw and Orfit Industries nv for their continued contribution to the project.

References

  1. 1.
    Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194 (1999)Google Scholar
  2. 2.
    Hasler, N., et al.: A statistical model of human pose and body shape. Comput. Graph. Forum 28(2), 337–346 (2009)CrossRefGoogle Scholar
  3. 3.
    Anguelov, D., et al.: SCAPE: shape completion and animation of people. ACM Trans. Graph. 24(3), 408–416 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Harih, G., Tada, M.: Development of a finite element digital human hand model. In: 7th International Conference on 3D Body Scanning Technologies, pp. 208–213 (2016)Google Scholar
  5. 5.
    Tagliasacchi, A., et al.: Robust articulated-ICP for real-time hand tracking. Comput. Graph. Forum 34(5), 101–114 (2015)CrossRefGoogle Scholar
  6. 6.
    Taylor, J., et al.: User-specific hand modeling from monocular depth sequences. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 644–651 (2014)Google Scholar
  7. 7.
    Oikonomidis, I., et al.: Evolutionary quasi-random search for hand articulations tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3422–3429 (2014)Google Scholar
  8. 8.
    Sharp, T., et al.: Accurate, robust, and flexible real-time hand tracking. In: 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 3633–3642 (2015)Google Scholar
  9. 9.
    Zhu, L., et al.: Adaptable anatomical models for realistic bone motion reconstruction. Comput. Graph. Forum 34(2), 459–471 (2015)CrossRefGoogle Scholar
  10. 10.
    Tan, D.J., et al.: Fits like a glove: rapid and reliable hand shape personalization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5610–5619 (2016)Google Scholar
  11. 11.
    Khamis, S., et al.: Learning an efficient model of hand shape variation from depth images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2540–2548 (2015)Google Scholar
  12. 12.
    Lübbers, H.-T., et al.: Precision and accuracy of the 3dMD photogrammetric system in craniomaxillofacial application. J. Craniofac. Surg. 21(3), 763–767 (2010)CrossRefGoogle Scholar
  13. 13.
    Grothausmann, R.: Providing values of adjacent voxel with vtkDiscreteMarchingCubes (2016)Google Scholar
  14. 14.
    Visual Computing Lab ISTI CNR: MeshLab. http://www.meshlab.sourceforge.net
  15. 15.
    Valette, S., Chassery, J.-M.: Approximated centroidal voronoi diagrams for uniform polygonal mesh coarsening. Comput. Graph. Forum 23(3), 381–389 (2004)CrossRefGoogle Scholar
  16. 16.
    Wu, G., et al.: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J. Biomech. 38(5), 981–992 (2005)CrossRefGoogle Scholar
  17. 17.
    James, F.: Minuit-a system for function minimization and analysis of the parameter errors and correlations. Comput. Phys. Commun. 10(6), 343–367 (1975)CrossRefGoogle Scholar
  18. 18.
    Park, A.E., et al.: The Fibonacci sequence: relationship to the human hand. J. Hand Surg. Am. 28(1), 157–160 (2003)CrossRefGoogle Scholar
  19. 19.
    Lewis, J.P., et al.: Pose space deformation. In: 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 165–172 (2000)Google Scholar
  20. 20.
    Baran, I., Popovi, J.: Automatic rigging and animation of 3D characters. ACM Trans. Graph. Artic. 26(3), 72 (2007)CrossRefGoogle Scholar
  21. 21.
    Shoemake, K., et al.: Animating rotation with quaternion curves. In: ACM SIGGRAPH Computer Graphics, pp. 245–254 (1985)Google Scholar
  22. 22.
    Park, S.-Y., Subbarao, M.: An accurate and fast point-to-plane registration technique. Pattern Recognit. Lett. 24(16), 2967–2976 (2003)CrossRefGoogle Scholar
  23. 23.
    Danckaers, F., et al.: Correspondence preserving elastic surface registration with shape model prior. In: 22nd International Conference on Pattern Recognition, pp. 2143–2148 (2014)Google Scholar
  24. 24.
    Cootes, T.F., et al.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  25. 25.
    Davies, R.H., et al.: A minimum description length approach to statistical shape modelling. IEEE Trans. Med. Imaging 21(5), 525–537 (2002)CrossRefGoogle Scholar
  26. 26.
    Su, Z.: Statistical Shape Modelling: Automatic Shape Model Building. University College London (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Jeroen Van Houtte
    • 1
  • Kristina Stanković
    • 1
  • Brian G. Booth
    • 1
  • Femke Danckaers
    • 1
  • Véronique Bertrand
    • 2
  • Frederik Verstreken
    • 2
  • Jan Sijbers
    • 1
  • Toon Huysmans
    • 1
    • 3
  1. 1.imec-Vision LabUniversity of AntwerpAntwerpBelgium
  2. 2.Orthopedic DepartmentAZ Monica HospitalAntwerpBelgium
  3. 3.Applied Ergonomics and DesignDelft University of TechnologyDelftThe Netherlands

Personalised recommendations