Advertisement

Some Classical/Quantum Aspects of Calabi-Yau Moduli

Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

We review some classical and quantum geometry of Calabi-Yau moduli related to B-model aspects of closed string mirror symmetry. This note comes out of the author’s lectures in the workshop “B-model aspects of Gromov-Witten theory” held at University of Michigan in 2013.

Notes

Acknowledgements

The authors would like to thank the organizers and participants of the workshop on B-model aspects of Gromov-Witten theory, and the hospitality of the mathematics department at University of Michigan.

References

  1. 1.
    Barannikov, S.: Extended moduli spaces and mirror symmetry in dimensions n > 3, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.), University of California, Berkeley (1999)Google Scholar
  2. 2.
    Barannikov, S.: Quantum periods, I. Semi-infinite variations of Hodge structures. Int. Math. Res. Not. 23, 1243–1264 (2001)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Barannikov, S.: Non-commutative periods and mirror symmetry in higher dimensions. Commun. Math. Phys. 228(2), 281–325 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barannikov, S.: Semi-infinite Hodge structures and mirror symmetry for projective spaces (2001). arXiv:math.AG/0010157Google Scholar
  5. 5.
    Barannikov, S., Kontsevich, M.: Frobenius manifolds and formality of Lie algebras of polyvectorfields. Int. Math. Res. Not. 4, 201–215 (1998)CrossRefGoogle Scholar
  6. 6.
    Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165(2), 311–427 (1994). MR1301851(95f:32029)Google Scholar
  7. 7.
    Coates, T., Givental, A.B.: Quantum Riemann-Roch, Lefschetz and Serre. Ann. Math. (2) 165(1), 15–53 (2007)Google Scholar
  8. 8.
    Costello, K.: Topological conformal field theories and Calabi-Yau categories. Adv. Math. 210(1), 165–214 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Costello, K.: The partition function of a topological field theory. J. Topol. 2(4), 779–822 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Costello, K.: Renormalization and Effective Field Theory. Mathematical Surveys and Monographs, vol. 170. American Mathematical Society, Providence (2011). MR2778558Google Scholar
  11. 11.
    Costello, K., Li, S.: Quantum BCOV theory on Calabi-Yau manifolds and the higher genus Bmodel (2011). arXiv:1201.4501 [math.QA]Google Scholar
  12. 12.
    Douai, A., Sabbah, C.: Gauss-Manin systems, Brieskorn lattices and Frobenius structures, I. In: Proceedings of the International Conference in Honor of Frédéric Pham (Nice, 2002), pp. 1055–1116 (2003)Google Scholar
  13. 13.
    Douai, A., Sabbah, C.: Gauss-Manin systems, Brieskorn lattices and Frobenius structures, II. In: Frobenius Manifolds. Aspects of Mathematics, vol. E36, pp. 1–18. Vieweg, Wiesbaden (2004)Google Scholar
  14. 14.
    Dubrovin, B.: Geometry of 2D topological field theories. In: Integrable Systems and Quantum Groups (Montecatini Terme, 1993). Lecture Notes in Mathematics, vol. 1620, pp. 120–348. Springer, Berlin (1996)Google Scholar
  15. 15.
    Fan, H., Jarvis, T., Ruan, Y.: The Witten equation, mirror symmetry, and quantum singularity theory. Ann. Math. (2) 178(1), 1–106 (2013)Google Scholar
  16. 16.
    Givental, A.B.: A mirror theorem for toric complete intersections. In: Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996). Progress in Mathematics, vol. 160, pp. 141–175. Birkhäuser, Boston (1998)Google Scholar
  17. 17.
    Givental, A.B.: A tutorial on quantum cohomology. In: Symplectic Geometry and Topology (Park City, UT, 1997). IAS/Park City Mathematics Series, vol. 7, pp. 231–264. American Mathematical Society, Providence (1999)Google Scholar
  18. 18.
    Givental, A.B.: Gromov-Witten invariants and quantization of quad ratic Hamiltonians. Mosc. Math. J. 1(4), 551–568, 645 (2001). Dedicated to the memory of I. G. Petrovskii on the occasion of his100th anniversaryGoogle Scholar
  19. 19.
    Givental, A.B.: Symplectic geometry of Frobenius structures. In: Frobenius Manifolds. Aspects of Mathematics, vol. E36, pp. 91–112. Vieweg, Wiesbaden (2004)Google Scholar
  20. 20.
    He, W., Li, S., Shen, Y., Webb, R.: Landau-Ginzburg mirror symmetry conjecture (2015). arXiv:math.AG/1503.01757Google Scholar
  21. 21.
    Kaneko, M., Zagier, D.: A generalized Jacobi theta function and quasimodular forms. In: The Modulispace of Curves (Texel Island, 1994). Progress in Mathematics, vol. 129, pp. 165–172. Birkhäuser, Boston (1995)Google Scholar
  22. 22.
    Kontsevich, M., Soibelman, Y.: Notes on A-algebras, A-categories and non-commutative geometry. In: Homological Mirror Symmetry. Lecture Notes in Physics, vol. 757, pp. 153–219. Springer, Berlin (2009). MR2596638Google Scholar
  23. 23.
    Li, S.: Calabi-Yau geometry and higher genus mirror symmetry. Thesis, Harvard (2011)Google Scholar
  24. 24.
    Li, S.: Feynman graph integrals and almost modular forms. Commun. Number Theory and Phys. 6, 129–157 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Li, S.: BCOV theory on the elliptic curve and higher genus mirror symmetry (2011). arXiv:1112.4063 [math.QA]Google Scholar
  26. 26.
    Li, S.: Vertex algebras and quantum master equation (2016). arXiv:1612.01292 [math.QA]Google Scholar
  27. 27.
    Li, C., Li, S., Saito, K., Shen, Y.: Mirror symmetry for exceptional unimodular singularities. J. Eur. Math. Soc. 19(4), 1189–1229 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Li, C., Li, S., Saito, K.: Primitive forms via polyvector fields (2013). arXiv: math.AG/1311.1659Google Scholar
  29. 29.
    Lian, B.H., Liu, K.F., Yau, S.T.: Mirror principle I. Asian J. Math. 1(4), 729–763 (1997)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Losev, A., Shadrin, S., Shneiberg, I.: Tautological relations in Hodge field theory. Nucl. Phys. B 786(3), 267–296 (2007)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Okounkov, A., Pandharipande, R.: Virasoro constraints for target curves. Invent. Math. 163(1), 47–108 (2006)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Saito, K.: The higher residue pairings \(K_{F}^{(k)}\) for a family of hypersurface singular points. In: Singularities, Part 2. Proceedings of Symposia in Pure Mathematics (Arcata, Calif., 1981), pp. 441–463 (1983)Google Scholar
  33. 33.
    Saito, K.: Period mapping associated to a primitive form. Publ. Res. Inst. Math. Sci. 19(3), 1231–1264 (1983)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Saito, M.: On the structure of Brieskorn lattice. Ann. Inst. Fourier (Grenoble) 39(1), 27–72 (1989)Google Scholar
  35. 35.
    Saito, K.: From primitive form to mirror symmetry (2014). arXiv: math.AG/1408.4208Google Scholar
  36. 36.
    Saito, M.: On the structure of Brieskorn lattices, II (2013). arXiv: math.AG/1312.6629Google Scholar
  37. 37.
    Takahashi, A.: Primitive forms, topological LG models coupled to gravity and mirror symmetry (1998). arXiv: math.AG/9802059Google Scholar
  38. 38.
    Zwiebach, B.: Closed string field theory: quantum action and the Batalin-Vilkovisky master equation. Nucl. Phys. B 390(1), 33–152 (1993)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Yau Mathematical Sciences CenterTsinghua UniversityBeijingChina

Personalised recommendations