A Blockchain Architecture for Reducing the Bullwhip Effect

  • Sélinde van EngelenburgEmail author
  • Marijn Janssen
  • Bram Klievink
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 319)


Supply chain management is hampered by a lack of information sharing among partners. Information is not shared as organizations in the supply chain do not have direct contact and/or do not want to share competitive and privacy sensitive information. In addition, companies are often part of multiple supply chains and trading partners vary over time. Blockchains are distributed ledgers in which all parties in a network can have access to data under certain conditions. Private blockchains can be used to support parties in making their demand data directly available to all other parties in their supply chain. These parties can use this data to improve their planning and reduce the bullwhip effect. However, the transparency that blockchain technology offers makes it more difficult to protect sensitive data. The dynamics between these properties are not well understood. In this paper, we design and evaluate a blockchain architecture to explore its feasibility for reducing information asymmetry, while at the same time protecting sensitive data. We found that blockchain technology can allow parties to balance their need for inventory management with their need for flexibility for changing partners. However, measures to protect sensitive data lead either to reduced information, or to reduced speed by which the information can be accessed.


Blockchain Blockchain technology Supply chain management Information sharing Information asymmetry Bullwhip effect Distributed ledger 


  1. 1.
    Lee, H.L., Padmanabhan, V., Whang, S.: Information distortion in a supply chain: the bullwhip effect. Manag. Sci. 43, 546–558 (1997)CrossRefGoogle Scholar
  2. 2.
    Lee, H.L., Padmanabhan, V., Whang, S.: The bullwhip effect in supply chains. Sloan Manag. Rev. 38, 93–102 (1997)zbMATHGoogle Scholar
  3. 3.
    Fiala, P.: Information sharing in supply chains. Omega 33, 419–423 (2005)CrossRefGoogle Scholar
  4. 4.
    Bray, R.L., Mendelson, H.: Information transmission and the bullwhip effect: an empirical investigation. Manag. Sci. 58, 860–875 (2012)CrossRefGoogle Scholar
  5. 5.
    Cannella, S., Ciancimino, E.: On the bullwhip avoidance phase: supply chain collaboration and order smoothing. Int. J. Prod. Res. 48, 6739–6776 (2010)CrossRefGoogle Scholar
  6. 6.
    Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008).
  7. 7.
    Buterin, V.: On public and private blockchains.
  8. 8.
    Pilkington, M.: Blockchain technology: principles and applications. In: Olleros, F.X., Zhegu, M. (eds.) Research Handbook on Digital Transformations, pp. 227–253. Edward Elgar Publishing, Cheltenham (2016)Google Scholar
  9. 9.
    Fawcett, S.E., Osterhaus, P., Magnan, G.M., Brau, J.C., McCarter, M.W.: Information sharing and supply chain performance: the role of connectivity and willingness. Supply Chain Manag. Int. J. 12, 358–368 (2007)CrossRefGoogle Scholar
  10. 10.
    Abeyratne, S.: Blockchain ready manufacturing supply chain using distributed ledger. Int. J. Res. Eng. Technol. 5, 1–10 (2016)Google Scholar
  11. 11.
    van Engelenburg, S., Janssen, M., Klievink, B.: Design of a software architecture supporting business-to-government information sharing to improve public safety and security. J. Intell. Inf. Syst. (2017)Google Scholar
  12. 12.
    Tian, F.: An agri-food supply chain traceability system for china based on RFID & blockchain technology. In: 2016 13th International Conference Service System and Service Management, pp. 1–6 (2016)Google Scholar
  13. 13.
    Korpela, K., Hallikas, J., Dahlberg, T.: Digital supply chain transformation toward blockchain integration. In: Proceedings of the 50th Hawaii International Conference on System Sciences, pp. 4182–4191 (2017)Google Scholar
  14. 14.
    Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.: Untrusted business process monitoring and execution using blockchain. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347. Springer, Cham (2016). Scholar
  15. 15.
    Schweizer, A., Schlatt, V., Urbach, N., Fridgen, G.: Unchaining social businesses - blockchain as the basic technology of a crowdlending platform. In: 38th International Conference Information System, pp. 1–21 (2017)Google Scholar
  16. 16.
    Mendling, J., Weber, I., van der Aalst, W., vom Brocke, J., Cabanillas, C., Daniel, F., Debois, S., Di Ciccio, C., Dumas, M., Dustdar, S., Gal, A., Garcia-Banuelos, L., Governatori, G., Hull, R., La Rosa, M., Leopold, H., Leymann, F., Recker, J., Reichert, M., Reijers, H.A., Rinderle-Ma, S., Rogge-Solti, A., Rosemann, M., Schulte, S., Singh, M.P., Slaats, T., Staples, M., Weber, B., Weidlich, M., Weske, M., Xu, X., Zhu, L.: Blockchains for business process management - challenges and opportunities. arXiv:1704.03610, vol. 9, pp. 1–16 (2017)
  17. 17.
    López-Pintado, O., García-Bañuelos, L., Dumas, M., Weber, I.: Caterpillar: a blockchain-based business process management system. In: CEUR Workshop Proceedings, vol. 1920, pp. 1–5 (2017)Google Scholar
  18. 18.
    van der Aalst, W.M.P., De Masellis, R., Di Francescomarino, C., Ghidini, C.: Learning hybrid process models from events: process discovery without faking confidence. In: International Conference on Business Process Management (2017)Google Scholar
  19. 19.
    Tasca, P., Tessone, C.J.: Taxonomy of blockchain technologies. Principles of identification and classification. arXiv Preprint arXiv:1708.04872
  20. 20.
    Matthias, H., Stephen, D., Jan, H., Johanna, S.: Supply chain collaboration: making sense of the strategy continuum. Eur. Manag. J. 23, 170–181 (2005)CrossRefGoogle Scholar
  21. 21.
    Dejonckheere, J., Disney, S.M., Lambrecht, M.R., Towill, D.R.: The impact of information enrichment on the bullwhip effect in supply chains: a control engineering perspective. Eur. J. Oper. Res. 153, 727–750 (2003)CrossRefGoogle Scholar
  22. 22.
    Chatfield, D.C., Kim, J.G., Harrison, T.P., Hayya, J.C.: The bullwhip effect-impact of stochastic lead time, information quality, and information sharing: a simulation study. Prod. Oper. Manag. 13, 340–353 (2004)CrossRefGoogle Scholar
  23. 23.
    Klievink, B., van Stijn, E., Hesketh, D., Aldewereld, H., Overbeek, S., Heijmann, F., Tan, Y.-H.: Enhancing visibility in international supply chains: the data pipeline concept. Int. J. Electron. Gov. Res. 8, 14–33 (2012)CrossRefGoogle Scholar
  24. 24.
    van Stijn, E., Hesketh, D., Tan, Y.-H., Klievink, B., Overbeek, S., Heijmann, F., Pikart, M., Butterly, T.: The data pipeline. In: Global Trade Facilitation Conference 2011, pp. 27–32 (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Technology, Policy and ManagementDelft University of TechnologyDelftThe Netherlands

Personalised recommendations