Colorimetric Screening of the Haze Model Limits

  • Jessica El KhouryEmail author
  • Jean-Baptiste Thomas
  • Alamin Mansouri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10884)


The haze model, which describes the degradation of atmospheric visibility, is a good approximation for a wide range of weather conditions and several situations. However, it misrepresents the perceived scenes and causes therefore undesirable results on dehazed images at high densities of fog. In this paper, using data from CHIC database, we investigate the possibility to screen the regions of the hazy image, where the haze model inversion is likely to fail in providing perceptually recognized colors. This study is done upon the perceived correlation between the atmospheric light color and the objects’ colors at various fog densities. Accordingly, at high densities of fog, the colors are badly recovered and do not match the original fog-free image. At low fog densities, the haze model inversion provides acceptable results for a large panel of colors.


  1. 1.
    Cai, B., Xiangmin, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Duntley, S.Q.: The reduction of apparent contrast by the atmosphere. JOSA 38(2), 179–191 (1948)CrossRefGoogle Scholar
  3. 3.
    El Khoury, J., Thomas, J.-B., Mansouri, A.: Does dehazing model preserve color information? In: 2014 Tenth International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), pp. 606–613. IEEE (2014)Google Scholar
  4. 4.
    El Khoury, J., Thomas, J.-B., Mansouri, A.: Haze and convergence models: experimental comparison. In: AIC 2015 (2015)Google Scholar
  5. 5.
    El Khoury, J., Thomas, J.-B., Mansouri, A.: A color image database for haze model and dehazing methods evaluation. In: Mansouri, A., Nouboud, F., Chalifour, A., Mammass, D., Meunier, J., ElMoataz, A. (eds.) ICISP 2016. LNCS, vol. 9680, pp. 109–117. Springer, Cham (2016). Scholar
  6. 6.
    He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)CrossRefGoogle Scholar
  7. 7.
    Khoury, J.: Model and quality assessment of single image dehazing. Ph.D. thesis, Université de Bourgogne Franche-Comté (2016)Google Scholar
  8. 8.
    El Khoury, J., Thomas, J.-B., Mansouri, A.: A database with reference for image dehazing evaluation. J. Imaging Sci. Technol. 62, 10503-1–10503-13 (2017)CrossRefGoogle Scholar
  9. 9.
    Koschmieder, H.: Theorie der horizontalen Sichtweite: Kontrast und Sichtweite. Keim & Nemnich, Munich (1925)Google Scholar
  10. 10.
    Lee, S., Yun, S., Nam, J.-H., Won, C.S., Jung, S.-W.: A review on dark channel prior based image dehazing algorithms. EURASIP J. Image Video Process. 2016(1), 4 (2016)CrossRefGoogle Scholar
  11. 11.
    Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: AOD-Net: all-in-one dehazing network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4770–4778 (2017)Google Scholar
  12. 12.
    Li, Y., You, S., Brown, M.S., Tan, R.T.: Haze visibility enhancement: a survey and quantitative benchmarking. Comput. Vis. Image Underst. 165, 1–16 (2017)CrossRefGoogle Scholar
  13. 13.
    McCartney, E.J.: Optics of the Atmosphere Scattering by Molecules and Particles. Wiley, New York (1976). 421 pGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jessica El Khoury
    • 1
    Email author
  • Jean-Baptiste Thomas
    • 1
  • Alamin Mansouri
    • 1
  1. 1.Le2i, FRE CNRS 2005Université Bourgogne Franche-ComtéDijonFrance

Personalised recommendations