Advertisement

The Higher-Order Prover Leo-III

  • Alexander Steen
  • Christoph Benzmüller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10900)

Abstract

The automated theorem prover Leo-III for classical higher-order logic with Henkin semantics and choice is presented. Leo-III is based on extensional higher-order paramodulation and accepts every common TPTP dialect (FOF, TFF, THF), including their recent extensions to rank-1 polymorphism (TF1, TH1). In addition, the prover natively supports almost every normal higher-order modal logic. Leo-III cooperates with first-order reasoning tools using translations to many-sorted first-order logic and produces verifiable proof certificates. The prover is evaluated on heterogeneous benchmark sets.

References

  1. 1.
    Benzmüller, C., Sultana, N., Paulson, L.C., Theiß, F.: The higher-order prover LEO-II. J. Autom. Reason. 55(4), 389–404 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. J. Formaliz. Reason. 3(1), 1–27 (2010)MathSciNetMATHGoogle Scholar
  3. 3.
    Wisniewski, M., Steen, A., Benzmüller, C.: LeoPARD — a generic platform for the implementation of higher-order reasoners. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp. 325–330. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20615-8_22CrossRefGoogle Scholar
  4. 4.
    Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)MATHGoogle Scholar
  5. 5.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure - from CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 414–420. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38574-2_29CrossRefGoogle Scholar
  7. 7.
    Kaliszyk, C., Sutcliffe, G., Rabe, F.: TH1: the TPTP typed higher-order form with rank-1 polymorphism. In: Fontaine, P., et al. (eds.) 5th PAAR Workshop. CEUR Workshop Proceedings, vol. 1635, pp. 41–55. CEUR-WS.org (2016)Google Scholar
  8. 8.
    Blackburn, P., van Benthem, J.F., Wolter, F.: Handbook of modal logic, vol. 3. Elsevier, Amsterdam (2006)MATHGoogle Scholar
  9. 9.
    Raths, T., Otten, J.: The QMLTP problem library for first-order modal logics. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 454–461. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31365-3_35CrossRefGoogle Scholar
  10. 10.
    Andrews, P.: Church’s type theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Metaphysics Research Lab. Stanford University (2014)Google Scholar
  11. 11.
    Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Gabbay, D.M., Siekmann, J.H., Woods, J. (eds.) Handbook of the History of Logic. Computational Logic, vol. 9, pp. 215–254. North Holland/Elsevier, Amsterdam (2014)Google Scholar
  12. 12.
    Benzmüller, C., Paulson, L.: Multimodal and intuitionistic logics in simple type theory. Log. J. IGPL 18(6), 881–892 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gleißner, T., Steen, A., Benzmüller, C.: Theorem provers for every normal modal logic. In: Eiter, T., Sands, D. (eds.) LPAR-21. EPiC Series in Computing, Maun, Botswana, vol. 46, pp. 14–30. EasyChair (2017)Google Scholar
  14. 14.
    Hustadt, U., Schmidt, R.A.: MSPASS: modal reasoning by translation and first-order resolution. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 67–71. Springer, Heidelberg (2000).  https://doi.org/10.1007/10722086_7CrossRefMATHGoogle Scholar
  15. 15.
    Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: The tableau prover generator MetTeL2. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 492–495. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33353-8_41CrossRefGoogle Scholar
  16. 16.
    Benzmüller, C., Otten, J., Raths, T.: Implementing and evaluating provers for first-order modal logics. In: Raedt, L.D., et al. (eds.) ECAI 2012 of Frontiers in AI and Applications, Montpellier, France, vol. 242, pp. 163–168. IOS Press (2012)Google Scholar
  17. 17.
    Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45949-9CrossRefMATHGoogle Scholar
  18. 18.
    Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31365-3_11CrossRefGoogle Scholar
  19. 19.
    Otten, J.: MleanCoP: a connection prover for first-order modal logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 269–276. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08587-6_20CrossRefGoogle Scholar
  20. 20.
    Benzmüller, C., Woltzenlogel Paleo, B.: The inconsistency in Gödel’s ontological argument: a success story for AI in metaphysics. In: IJCAI 2016, vol. 1–3, pp. 936–942. AAAI Press (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Computer ScienceFreie Universität BerlinBerlinGermany
  2. 2.Computer Science and CommunicationsUniversity of LuxembourgEsch-sur-AlzetteLuxembourg

Personalised recommendations