Focussing, \(\mathsf {MALL}\) and the Polynomial Hierarchy

  • Anupam DasEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10900)


We investigate how to extract alternating time bounds from ‘focussed’ proofs, treating non-invertible rule phases as nondeterministic computation and invertible rule phases as co-nondeterministic computation. We refine the usual presentation of focussing to account for deterministic computations in proof search, which correspond to invertible rules that do not branch, more faithfully associating phases of focussed proof search to their alternating time complexity.

As our main result, we give a focussed system for \(\mathsf {MALL}\mathsf {w}\) (\(\mathsf {MALL}\) with weakening) with encodings to and from true quantified Boolean formulas (QBFs): in one direction we encode QBF satisfiability and in the other we encode focussed proof search. Moreover we show that the composition of the two encodings preserves quantifier alternation, yielding natural fragments of \(\mathsf {MALL}\mathsf {w}\) complete for each level of the polynomial hierarchy. This refines the well-known result that \(\mathsf {MALL}\mathsf {w}\) is \(\mathbf {PSPACE}\)-complete.



I would like to thank Taus Brock-Nannestad, Kaustuv Chaudhuri, Sonia Marin and Dale Miller for many fruitful discussions about focussing, in particular on the presentation of it herein.


  1. 1.
    Andreoli, J.: Logic programming with focusing proofs in linear logic. J. Log. Comput. 2(3), 297–347 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Buss, S.R.: The Boolean formula value problem is in ALOGTIME. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC) (1987)Google Scholar
  3. 3.
    Buss, S.R., Iemhoff, R.: The depth of intuitionistic cut free proofs (2003).
  4. 4.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chaudhuri, K., Miller, D., Saurin, A.: Canonical sequent proofs via multi-focusing. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) TCS 2008. IIFIP, vol. 273, pp. 383–396. Springer, Boston, MA (2008). Scholar
  6. 6.
    Cook, S., Nguyen, P.: Logical Foundations of Proof Complexity, 1st edn. Cambridge University Press, New York (2010)CrossRefGoogle Scholar
  7. 7.
    Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Log. 44(1), 36–50 (1979)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Das, A.: Alternating time bounds from variants of focussed proof systems (2017, submitted).
  9. 9.
    Delande, O., Miller, D., Saurin, A.: Proof and refutation in MALL as a game. Ann. Pure Appl. Logic 161(5), 654–672 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward proof search in some non-classical propositional logics. In: Miglioli, P., Moscato, U., Mundici, D., Ornaghi, M. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 210–225. Springer, Heidelberg (1996). Scholar
  12. 12.
    Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory. Cambridge University Press, New York (1995)CrossRefGoogle Scholar
  13. 13.
    Laurent, O.: A study of polarization in logic. Theses, Université de la Méditerranée - Aix-Marseille II (2002)Google Scholar
  14. 14.
    Letz, R.: Lemma and model caching in decision procedures for quantified Boolean formulas. In: Automated Reasoning with Analytic Tableaux and Related Methods, International Conference (TABLEAUX) (2002)zbMATHGoogle Scholar
  15. 15.
    Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and classical logics. Theor. Comput. Sci. 410(46), 4747–4768 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lincoln, P., Mitchell, J.C., Scedrov, A., Shankar, N.: Decision problems for propositional linear logic. In: 31st Annual Symposium on Foundations of Computer Science (FOCS) (1990)Google Scholar
  17. 17.
    Lincoln, P., Mitchell, J.C., Scedrov, A., Shankar, N.: Decision problems for propositional linear logic. Ann. Pure Appl. Log. 56(1–3), 239–311 (1992)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Marin, S., Miller, D., Volpe, M.: A focused framework for emulating modal proof systems. In: 11th Conference on Advances in Modal Logic, pp. 469–488 (2016)Google Scholar
  19. 19.
    Miller, D., Volpe, M.: Focused labeled proof systems for modal logic. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 266–280. Springer, Heidelberg (2015). Scholar
  20. 20.
    Negri, S., Von Plato, J., Ranta, A.: Structural Proof Theory. Cambridge University Press, Cambridge (2008)Google Scholar
  21. 21.
    Nigam, V.: Investigating the use of lemmas (2007, preprint)Google Scholar
  22. 22.
    Ono, H.: Proof-Theoretic Methods in Nonclassical Logic – An Introduction. MSJ Memoirs, vol. 2, pp. 207–254. The Mathematical Society of Japan, Tokyo (1998)Google Scholar
  23. 23.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)zbMATHGoogle Scholar
  24. 24.
    Statman, R.: Intuitionistic propositional logic is polynomial-space complete. Theor. Comput. Sci. 9, 67–72 (1979)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 1–22 (1976)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Troelstra, A., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracts in Theoretical Computer Science, vol. 43. Cambridge University Press, Cambridge (1996)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of CopenhagenCopenhagenDenmark

Personalised recommendations