A Resolution-Based Calculus for Preferential Logics

  • Cláudia NalonEmail author
  • Dirk Pattinson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10900)


The vast majority of modal theorem provers implement modal tableau, or backwards proof search in (cut-free) sequent calculi. The design of suitable calculi is highly non-trivial, and employs nested sequents, labelled sequents and/or specifically designated transitional formulae. Theorem provers for first-order logic, on the other hand, are by and large based on resolution. In this paper, we present a resolution system for preference-based modal logics, specifically Burgess’ system Open image in new window . Our main technical results are soundness and completeness. Conceptually, we argue that resolution-based systems are not more difficult to design than cut-free sequent calculi but their purely syntactic nature makes them much better suited for implementation in automated reasoning systems.

Supplementary material


  1. 1.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. JLC 4(3), 217–247 (1994)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Beckert, B., Goré, R.: System description: leanK 2.0. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS, vol. 1421, pp. 51–55. Springer, Heidelberg (1998). Scholar
  3. 3.
    Burgess, J.P.: Quick completeness proofs for some logics of conditionals. Notre Dame J. Formal Log. 22(1), 76–84 (1981)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chellas, B.: Modal Logic. Cambridge University Press, Cambridge (1980)CrossRefGoogle Scholar
  5. 5.
    David, A.: Deciding \(\sf ATL^*\) satisfiability by tableaux. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 214–228. Springer, Cham (2015). Scholar
  6. 6.
    Friedman, N., Halpern, J.Y.: On the complexity of conditional logics. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) Proceedings of KR 1994, pp. 202–213. M. Kaufmann (1994)CrossRefGoogle Scholar
  7. 7.
    Gasquet, O., Herzig, A., Longin, D., Sahade, M.: LoTREC: logical tableaux research engineering companion. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 318–322. Springer, Heidelberg (2005). Scholar
  8. 8.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic tableaux calculi for KLM logics of nonmonotonic reasoning. ACM Trans. Comput. Log. 10(3), 18:1–18:47 (2009)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculus for preference-based conditional logics: PCL and its extensions. ACM Trans. Comput. Log. 10(3), 21 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gorín, D., Pattinson, D., Schröder, L., Widmann, F., Wißmann, T.: Cool – a generic reasoner for coalgebraic hybrid logics (system description). In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 396–402. Springer, Cham (2014). Scholar
  11. 11.
    Haarslev, V., Möller, R.: RACER system description. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 701–705. Springer, Heidelberg (2001). Scholar
  12. 12.
    Hustadt, U., Gainer, P., Dixon, C., Nalon, C., Zhang, L.: Ordered resolution for coalition logic. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 169–184. Springer, Cham (2015). Scholar
  13. 13.
    Nalon, C., Hustadt, U., Dixon, C.: K\(_{{\rm S}}\)P: a resolution-based prover for multimodal K. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 406–415. Springer, Cham (2016). Scholar
  14. 14.
    Olivetti, N., Pozzato, G.L.: Nested sequent calculi and theorem proving for normal conditional logics: the theorem prover NESCOND. Intell. Artif. 9(2), 109–125 (2015)Google Scholar
  15. 15.
    Olivetti, N., Pozzato, G.L., Schwind, C.: A sequent calculus and a theorem prover for standard conditional logics. ACM Trans. Comput. Log. 8(4), 22 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Plaisted, D.A., Greenbaum, S.A.: A structure-preserving clause form translation. JLC 2, 293–304 (1986)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Commun. 15(2–3), 91–110 (2002)zbMATHGoogle Scholar
  18. 18.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Schröder, L., Pattinson, D., Hausmann, D.: Optimal tableaux for conditional logics with cautious monotonicity. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) Proceedings of the ECAI 2010 Frontiers in Artificial Intelligence and Applications, vol. 215 , pp. 707–712. IOS Press (2010)Google Scholar
  20. 20.
    Schulz, S.: System description: E 0.81. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 223–228. Springer, Heidelberg (2004). Scholar
  21. 21.
    Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006). Scholar
  22. 22.
    Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 140–145. Springer, Heidelberg (2009). Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of BrasíliaBrasíliaBrazil
  2. 2.Research School of Computer ScienceAustralian National UniversityCanberraAustralia

Personalised recommendations