From Syntactic Proofs to Combinatorial Proofs

  • Matteo Acclavio
  • Lutz Straßburger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10900)


In this paper we investigate Hughes’ combinatorial proofs as a notion of proof identity for classical logic. We show for various syntactic formalisms including sequent calculus, analytic tableaux, and resolution, how they can be translated into combinatorial proofs, and which notion of identity they enforce. This allows the comparison of proofs that are given in different formalisms.


  1. 1.
    Bellin, G., van de Wiele, J.: Subnets of proof-nets in MLL\(^-\). In: Advances in Linear Logic, pp. 249–270. Cambridge University Press (1995)Google Scholar
  2. 2.
    Brünnler, K., Tiu, A.F.: A local system for classical logic. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 347–361. Springer, Heidelberg (2001). Scholar
  3. 3.
    Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Logic 44(1), 36–50 (1979)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Das, A.: On the relative proof complexity of deep inference via atomic flows. Log. Methods Comput. Sci. 11(1), 1–23 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Das, A., Straßburger, L.: On linear rewriting systems for Boolean logic and some applications to proof theory. Log. Methods Comput. Sci. 12(4), 1–27 (2016)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Duffin, R.: Topology of series-parallel networks. J. Math. Anal. Appl. 10(2), 303–318 (1965)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer Science & Business Media, Heidelberg (2012)zbMATHGoogle Scholar
  8. 8.
    Gentzen, G.: Untersuchungen über das logische Schließen. I. Mathematische Zeitschrift 39, 176–210 (1935)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Guglielmi, A., Straßburger, L.: Non-commutativity and MELL in the calculus of structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 54–68. Springer, Heidelberg (2001). Scholar
  10. 10.
    Hughes, D.: Proofs Without Syntax. Ann. Math. 164(3), 1065–1076 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hughes, D.: Towards Hilbert’s 24\({}^{\text{ th }}\) problem: combinatorial proof invariants: (preliminary version). Electr. Notes Theor. Comput. Sci. 165, 37–63 (2006)CrossRefGoogle Scholar
  12. 12.
    Hughes, D.J.: Unification nets: canonical proof net quantifiers. In: LICS 2018 (2018)Google Scholar
  13. 13.
    Marin, S., Straßburger, L.: Label-free modular systems for classical and intuitionistic modal logics. In: Advances in Modal Logic 10 (2014)Google Scholar
  14. 14.
    Retoré, C.: Handsome proof-nets: perfect matchings and cographs. Theor. Comput. Sci. 294(3), 473–488 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Smullyan, R.M.: First-Order Logic. Courier Corporation, Massachusetts (1995)zbMATHGoogle Scholar
  16. 16.
    Straßburger, L.: A characterization of medial as rewriting rule. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 344–358. Springer, Heidelberg (2007). Scholar
  17. 17.
    Straßburger, L.: Combinatorial flows and proof compression. Research report RR-9048, Inria Saclay (2017).
  18. 18.
    Straßburger, L.: Combinatorial flows and their normalisation. In: Miller, D. (ed.) FSCD 2017. LIPIcs, vol. 84, pp. 31:1–31:17. Schloss Dagstuhl (2017)Google Scholar
  19. 19.
    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, vol. 43. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Matteo Acclavio
    • 1
  • Lutz Straßburger
    • 1
  1. 1.Inria Saclay & LIX, Ecole PolytechniquePalaiseauFrance

Personalised recommendations