Advertisement

MædMax: A Maximal Ordered Completion Tool

  • Sarah Winkler
  • Georg Moser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10900)

Abstract

The equational reasoning tool MædMax implements maximal ordered completion. This new approach extends the maxSMT-based method for standard completion developed by Klein and Hirokawa (2011) to ordered completion and equational theorem proving. MædMax incorporates powerful ground completeness checks and supports certification of its proofs by an Isabelle-based certifier. It also provides an order generation mode which can be used to synthesize term orderings for other tools. Experiments show the potential of our approach.

Notes

Acknowledgements

The authors thank Ryan Wisnesky for sharing AQL problems, and the anonymous referees for their helpful comments.

References

  1. 1.
    Avenhaus, J., Hillenbrand, T., Löchner, B.: On using ground joinable equations in equational theorem proving. JSC 36(1–2), 217–233 (2003).  https://doi.org/10.1016/S0747-7171(03)00024-5MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998).  https://doi.org/10.1017/CBO9781139172752CrossRefzbMATHGoogle Scholar
  3. 3.
    Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In: Aït Kaci, H., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures, Rewriting Techniques of Progress in Theoretical Computer Science, vol. 2, pp. 1–30. Academic Press, Cambridge (1989)Google Scholar
  4. 4.
    Comon, H., Narendran, P., Nieuwenhuis, R., Rusinowitch, M.: Deciding the confluence of ordered term rewrite systems. ACM TOCL 4(1), 33–55 (2003).  https://doi.org/10.1145/601775.601777MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006).  https://doi.org/10.1007/11817963_11CrossRefGoogle Scholar
  6. 6.
    Hirokawa, N., Middeldorp, A., Sternagel, C., Winkler, S.: Infinite runs in abstract completion. In: Proceedings of the 2nd FSCD. LIPIcs, vol. 84, pp. 19:1–19:16 (2017).  https://doi.org/10.4230/LIPIcs.FSCD.2017.19
  7. 7.
    Klein, D., Hirokawa, N.: Maximal completion. In: Proceedings of the 22nd RTA. LIPIcs, vol. 10, pp. 71–80 (2011).  https://doi.org/10.4230/LIPIcs.RTA.2011.71
  8. 8.
    Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970).  https://doi.org/10.1016/B978-0-08-012975-4CrossRefzbMATHGoogle Scholar
  9. 9.
    Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39799-8_1CrossRefGoogle Scholar
  10. 10.
    Martin, U., Nipkow, T.: Ordered rewriting and confluence. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 366–380. Springer, Heidelberg (1990).  https://doi.org/10.1007/3-540-52885-7_100CrossRefGoogle Scholar
  11. 11.
    Sato, H., Winkler, S.: Encoding dependency pair techniques and control strategies for maximal completion. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 152–162. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21401-6_10CrossRefGoogle Scholar
  12. 12.
    Schultz, P., Wisnesky, R.: Algebraic data integration. JFP 27(e24), 51 (2017).  https://doi.org/10.1017/S0956796817000168MathSciNetCrossRefGoogle Scholar
  13. 13.
    Schulz, S.: Fingerprint indexing for paramodulation and rewriting. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 477–483. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31365-3_37CrossRefGoogle Scholar
  14. 14.
    Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45221-5_49CrossRefGoogle Scholar
  15. 15.
    Sternagel, T.: Reliable confluence analysis of conditional term rewrite systems. Ph.D. thesis. University of Innsbruck (2017)Google Scholar
  16. 16.
    Sternagel, T., Winkler, S., Zankl, H.: Recording completion for certificates in equational reasoning. In: Proceedings of CPP 2015, pp. 41–47 (2015).  https://doi.org/10.1145/2676724.2693171
  17. 17.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF and CNF parts. JAR 43(4), 337–362 (2009).  https://doi.org/10.1007/s10817-009-9143-8CrossRefzbMATHGoogle Scholar
  18. 18.
    Winkler, S.: A ground joinability criterion for ordered completion. In: Proceedings of 6th IWC, pp. 45–49 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of InnsbruckInnsbruckAustria

Personalised recommendations