MædMax: A Maximal Ordered Completion Tool

  • Sarah Winkler
  • Georg Moser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10900)


The equational reasoning tool MædMax implements maximal ordered completion. This new approach extends the maxSMT-based method for standard completion developed by Klein and Hirokawa (2011) to ordered completion and equational theorem proving. MædMax incorporates powerful ground completeness checks and supports certification of its proofs by an Isabelle-based certifier. It also provides an order generation mode which can be used to synthesize term orderings for other tools. Experiments show the potential of our approach.



The authors thank Ryan Wisnesky for sharing AQL problems, and the anonymous referees for their helpful comments.


  1. 1.
    Avenhaus, J., Hillenbrand, T., Löchner, B.: On using ground joinable equations in equational theorem proving. JSC 36(1–2), 217–233 (2003). Scholar
  2. 2.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998). Scholar
  3. 3.
    Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In: Aït Kaci, H., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures, Rewriting Techniques of Progress in Theoretical Computer Science, vol. 2, pp. 1–30. Academic Press, Cambridge (1989)Google Scholar
  4. 4.
    Comon, H., Narendran, P., Nieuwenhuis, R., Rusinowitch, M.: Deciding the confluence of ordered term rewrite systems. ACM TOCL 4(1), 33–55 (2003). Scholar
  5. 5.
    Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006). Scholar
  6. 6.
    Hirokawa, N., Middeldorp, A., Sternagel, C., Winkler, S.: Infinite runs in abstract completion. In: Proceedings of the 2nd FSCD. LIPIcs, vol. 84, pp. 19:1–19:16 (2017).
  7. 7.
    Klein, D., Hirokawa, N.: Maximal completion. In: Proceedings of the 22nd RTA. LIPIcs, vol. 10, pp. 71–80 (2011).
  8. 8.
    Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970). Scholar
  9. 9.
    Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013). Scholar
  10. 10.
    Martin, U., Nipkow, T.: Ordered rewriting and confluence. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 366–380. Springer, Heidelberg (1990). Scholar
  11. 11.
    Sato, H., Winkler, S.: Encoding dependency pair techniques and control strategies for maximal completion. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 152–162. Springer, Cham (2015). Scholar
  12. 12.
    Schultz, P., Wisnesky, R.: Algebraic data integration. JFP 27(e24), 51 (2017). Scholar
  13. 13.
    Schulz, S.: Fingerprint indexing for paramodulation and rewriting. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 477–483. Springer, Heidelberg (2012). Scholar
  14. 14.
    Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013). Scholar
  15. 15.
    Sternagel, T.: Reliable confluence analysis of conditional term rewrite systems. Ph.D. thesis. University of Innsbruck (2017)Google Scholar
  16. 16.
    Sternagel, T., Winkler, S., Zankl, H.: Recording completion for certificates in equational reasoning. In: Proceedings of CPP 2015, pp. 41–47 (2015).
  17. 17.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF and CNF parts. JAR 43(4), 337–362 (2009). Scholar
  18. 18.
    Winkler, S.: A ground joinability criterion for ordered completion. In: Proceedings of 6th IWC, pp. 45–49 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of InnsbruckInnsbruckAustria

Personalised recommendations