Advertisement

A Reduction from Unbounded Linear Mixed Arithmetic Problems into Bounded Problems

  • Martin Bromberger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10900)

Abstract

We present a combination of the Mixed-Echelon-Hermite transformation and the Double-Bounded reduction for systems of linear mixed arithmetic that preserve satisfiability and can be computed in polynomial time. Together, the two transformations turn any system of linear mixed constraints into a bounded system, i.e., a system for which termination can be achieved easily. Existing approaches for linear mixed arithmetic, e.g., branch-and-bound and cuts from proofs, only explore a finite search space after application of our two transformations. Instead of generating a priori bounds for the variables, e.g., as suggested by Papadimitriou, unbounded variables are eliminated through the two transformations. The transformations orient themselves on the structure of an input system instead of computing a priori (over-)approximations out of the available constants. Experiments provide further evidence to the efficiency of the transformations in practice. We also present a polynomial method for converting certificates of (un)satisfiability from the transformed to the original system.

Keywords

Linear arithmetic Integer arithmetic Mixed arithmetic SMT Linear Transformations Constraint solving 

References

  1. 1.
    Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp. 84–99. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04222-5_5CrossRefGoogle Scholar
  2. 2.
    Bareiss, E.H.: Sylvester’s identity and multistep integer-preserving Gaussian elimination. Math. Comput. 22(103), 565–578 (1968)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22110-1_14CrossRefGoogle Scholar
  4. 4.
    Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 39–57. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38574-2_3CrossRefGoogle Scholar
  5. 5.
    Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Mahboubi, A., Mebsout, A., Melquiond, G.: A simplex-based extension of Fourier-Motzkin for solving linear integer arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 67–81. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31365-3_8CrossRefGoogle Scholar
  6. 6.
    Boyd, S. Vandenberghe, L.: Convex optimization. In: CUP (2004)Google Scholar
  7. 7.
    Bromberger, M.: A reduction from unbounded linear mixed arithmetic problems into bounded problems. ArXiv e-Prints, abs/1804.07703 (2018)Google Scholar
  8. 8.
    Bromberger, M., Sturm, T., Weidenbach, C.: Linear integer arithmetic revisited. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 623–637. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21401-6_42CrossRefGoogle Scholar
  9. 9.
    Bromberger, M., Weidenbach, C.: Computing a complete basis for equalities implied by a system of LRA constraints. In: SMT 2016 (2016)Google Scholar
  10. 10.
    Bromberger, M., Weidenbach, C.: Fast cube tests for LIA constraint solving. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 116–132. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40229-1_9CrossRefGoogle Scholar
  11. 11.
    Bromberger, M., Weidenbach, C.: New techniques for linear arithmetic: cubes and equalities. Form. Methods Syst. Des. 51(3), 433–461 (2017)CrossRefGoogle Scholar
  12. 12.
    Christ, J., Hoenicke, J.: Cutting the mix. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 37–52. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21668-3_3CrossRefGoogle Scholar
  13. 13.
    Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: an interpolating SMT solver. In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31759-0_19CrossRefGoogle Scholar
  14. 14.
    Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36742-7_7CrossRefzbMATHGoogle Scholar
  15. 15.
    de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78800-3_24CrossRefGoogle Scholar
  16. 16.
    Dillig, I., Dillig, T., Aiken, A.: Cuts from proofs: a complete and practical technique for solving linear inequalities over integers. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 233–247. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02658-4_20CrossRefGoogle Scholar
  17. 17.
    Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 737–744. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08867-9_49CrossRefGoogle Scholar
  18. 18.
    Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006).  https://doi.org/10.1007/11817963_11CrossRefGoogle Scholar
  19. 19.
    Fietzke, A., Weidenbach, C.: Superposition as a decision procedure for timed automata. Math. Comput. Sci. 6(4), 409–425 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Griggio, A.: A practical approach to satisfiability modulo linear integer arithmetic. JSAT 8(1/2), 1–27 (2012)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Jovanović, D., de Moura, L.: Cutting to the chase. JAR 51(1), 79–108 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4), 765–768 (1981)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Max Planck Institute for Informatics and Saarland University, Saarland Informatics CampusSaarbrückenGermany
  2. 2.Graduate School of Computer Science, Saarland Informatics CampusSaarbrückenGermany

Personalised recommendations