Advertisement

\({\textsf {QRAT}}^{+}\): Generalizing QRAT by a More Powerful QBF Redundancy Property

  • Florian LonsingEmail author
  • Uwe Egly
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10900)

Abstract

The \(\mathsf {QRAT} \) (quantified resolution asymmetric tautology) proof system simulates virtually all inference rules applied in state of the art quantified Boolean formula (QBF) reasoning tools. It consists of rules to rewrite a QBF by adding and deleting clauses and universal literals that have a certain redundancy property. To check for this redundancy property in \(\mathsf {QRAT} \), propositional unit propagation (UP) is applied to the quantifier free, i.e., propositional part of the QBF. We generalize the redundancy property in the \(\mathsf {QRAT} \) system by QBF specific UP (QUP). QUP extends UP by the universal reduction operation to eliminate universal literals from clauses. We apply QUP to an abstraction of the QBF where certain universal quantifiers are converted into existential ones. This way, we obtain a generalization of \(\mathsf {QRAT} \) we call \(\mathsf {QRAT}^{+} \). The redundancy property in \(\mathsf {QRAT}^{+} \) based on QUP is more powerful than the one in \(\mathsf {QRAT} \) based on UP. We report on proof theoretical improvements and experimental results to illustrate the benefits of \(\mathsf {QRAT}^{+} \) for QBF preprocessing.

References

  1. 1.
    Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09284-3_12CrossRefzbMATHGoogle Scholar
  2. 2.
    Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: STACS. LIPIcs, vol. 30, pp. 76–89. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  3. 3.
    Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005).  https://doi.org/10.1007/11527695_5CrossRefzbMATHGoogle Scholar
  4. 4.
    Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded synthesis. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 354–370. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54577-5_20CrossRefGoogle Scholar
  5. 5.
    Fazekas, K., Heule, M.J.H., Seidl, M., Biere, A.: Skolem function continuation for quantified Boolean formulas. In: Gabmeyer, S., Johnsen, E.B. (eds.) TAP 2017. LNCS, vol. 10375, pp. 129–138. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61467-0_8CrossRefGoogle Scholar
  6. 6.
    Heule, M.J.H., Kiesl, B.: The potential of interference-based proof systems. In: ARCADE. EPiC Series in Computing, vol. 51, pp. 51–54. EasyChair (2017)Google Scholar
  7. 7.
    Heule, M.J.H., Kullmann, O.: The science of brute force. Commun. ACM 60(8), 70–79 (2017)CrossRefGoogle Scholar
  8. 8.
    Heule, M.J.H., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 91–106. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08587-6_7CrossRefGoogle Scholar
  9. 9.
    Heule, M.J.H., Seidl, M., Biere, A.: Blocked literals are universal. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 436–442. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-17524-9_33CrossRefGoogle Scholar
  10. 10.
    Heule, M.J.H., Seidl, M., Biere, A.: Solution validation and extraction for QBF preprocessing. J. Autom. Reason. 58(1), 97–125 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. Artif. Intell. 234, 1–25 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31365-3_28CrossRefGoogle Scholar
  13. 13.
    Kiesl, B., Heule, M.J.H., Seidl, M.: A little blocked literal goes a long way. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 281–297. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66263-3_18CrossRefGoogle Scholar
  14. 14.
    Kiesl, B., Suda, M.: A unifying principle for clause elimination in first-order logic. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 274–290. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63046-5_17CrossRefGoogle Scholar
  15. 15.
    Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lonsing, F., Biere, A.: Failed literal detection for QBF. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 259–272. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21581-0_21CrossRefGoogle Scholar
  17. 17.
    Lonsing, F., Egly, U.: DepQBF 6.0: A search-based QBF solver beyond traditional QCDCL. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 371–384. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63046-5_23CrossRefGoogle Scholar
  18. 18.
    Lonsing, F., Egly, U.: \({\sf QRAT}^{+}\): Generalizing \({\sf QRAT}\) by a more powerful QBF redundancy property. CoRR abs/1804.02908 (2018). https://arxiv.org/abs/1804.02908, IJCAR 2018 proceedings version with appendix
  19. 19.
    Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 298–313. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66263-3_19CrossRefGoogle Scholar
  20. 20.
    Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: FMCAD, pp. 136–143. IEEE (2015)Google Scholar
  21. 21.
    Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 514–529. Springer, Heidelberg (2006).  https://doi.org/10.1007/11889205_37CrossRefGoogle Scholar
  22. 22.
    Van Gelder, A.: Contributions to the theory of practical quantified Boolean formula solving. In: Milano, M. (ed.) CP 2012. LNCS, pp. 647–663. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33558-7_47CrossRefGoogle Scholar
  23. 23.
    Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: Efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 422–429. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09284-3_31CrossRefzbMATHGoogle Scholar
  24. 24.
    Wimmer, R., Reimer, S., Marin, P., Becker, B.: HQSpre – An effective preprocessor for QBF and DQBF. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 373–390. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54577-5_21CrossRefGoogle Scholar
  25. 25.
    Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: ICCAD, pp. 442–449. ACM/IEEE Computer Society (2002)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Division of Knowledge Based Systems, Institute of Logic and ComputationTU WienViennaAustria

Personalised recommendations