Advertisement

Resource Constrained Multi-project Scheduling: Application in Software Company

  • Pelin Akyil Kurt
  • Baris Kececi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 793)

Abstract

Project scheduling is a common problem of today’s companies, which have project type production system. Project scheduling is a mechanism to communicate what tasks need to get done and which organizational resources will be allocated to complete those tasks in what timeframe. In this study, it is aimed to find the shortest completion time of projects and the starting/ending time of each activity as well in a software company, which is running simultaneous projects including multiple activities with predecessors under limited resources. The linear programming formulations in the literature are searched to solve the scheduling problem. The considered model is coded in OPL (Optimization Programming Language). The CPLEX solver engine is used to find the best solution of the coded formulation. In order to facilitate the execution of the project scheduling activities at the company, a computer application in the JAVA programming language is developed. This application also helps to generate the OPL code of the model and as well as to solve the model. In this way, it is possible for the employees to direct the basic scheduling activities more accurately, quickly and efficiently.

Keywords

Resource constraint scheduling Project management Integer programming Decision support 

Notes

Acknowledgments

The authors would like to show their gratitude to the authorities in the company.

References

  1. 1.
    Fu, N., Lau, H.C., Varakantham, P., Xiao, F.: Robust local search for solving RCPSP/max with durational uncertainty. J. Artif. Int. Res. 43(1), 43–86 (2012)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Agarwal, A., Colak, S., Erenguc, S.: A neurogenetic approach for the resource-constrained project scheduling problem. Comput. Oper. Res. 38(1), 44–50 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Demeulemeester, E., Herroelen, W.: A branch-and-bound procedure for the multiple resource-constrained project scheduling problem. Manag. Sci. 38(12), 1803–1818 (1992)CrossRefGoogle Scholar
  4. 4.
    Artigues, C., Demassey, S., Neron, E.: Resource-Constrained Project Scheduling: Models, Algorithms, Extensions and Applications. Wiley, New York (2013)Google Scholar
  5. 5.
    Bartels, J.H., Zimmermann, J.: Scheduling tests in automotive R&D projects using a genetic algorithm. In: Handbook on Project Management and Scheduling, vol. 2, pp. 1157–1185. Springer (2015)Google Scholar
  6. 6.
    Kolisch, R.: Efficient priority rules for the resource-constrained project scheduling problem. J. Oper. Manag. 14(3), 179–192 (1996)CrossRefGoogle Scholar
  7. 7.
    Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project scheduling: notation, classification, models, and methods. Eur. J. Oper. Res. 112(1), 3–41 (1999)CrossRefGoogle Scholar
  8. 8.
    Mohring, R.H., Schulz, A.S., Stork, F., Uetz, M.: Solving project scheduling problems by minimum cut computations. Manag. Sci. 49(3), 330–350 (2003)CrossRefGoogle Scholar
  9. 9.
    Mika, M., Waligóra, G., Weglarz, J.: Modelling setup times in project scheduling. In: Perspectives in Modern Project Scheduling, pp. 131–163. Springer, Boston (2006)Google Scholar
  10. 10.
    James, J., Kelley, E.: Critical-path planning and scheduling: mathematical basis. Oper. Res. 9(3), 296–320 (1961)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Demeulemeester, E.L., Herroelen, W.S.: Project Scheduling. A Research Handbook. Kluwer Academic Publishers, Boston (2002)Google Scholar
  12. 12.
    Hartmann, S., Kolisch, R.: Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 127, 394–407 (2000)CrossRefGoogle Scholar
  13. 13.
    Chakrabortty, R.K., Sarker, R.A., Essam, D.L.: Event based approaches for solving multi-mode resource constraints project scheduling problem. In: Computer Information Systems and Industrial Management, pp. 375–386. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    Koné, O., Artigues, C., Lopez, P., Mongeau, M.: Comparison of mixed integer linear programming models for the resource-constrained project scheduling problem with consumption and production of resources. Flex. Serv. Manuf. J. 25, 25–47 (2013)CrossRefGoogle Scholar
  15. 15.
    Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. 207, 1–14 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Huang, L., Chen, H.S., Hu, T.T.: Survey on resource allocation policy and job scheduling algorithms of cloud computing. J. Softw. 8, 480–487 (2013)Google Scholar
  17. 17.
    Zhou, J., Love, P.E.D., Wang, X., Teo, K.L., Irani, Z.: A review of methods and algorithms for optimizing construction scheduling. J. Oper. Res. Soc. 64, 1091–1105 (2013)CrossRefGoogle Scholar
  18. 18.
    Kolisch, R., Padman, R.: An integrated survey of deterministic project scheduling. Omega 29, 249–272 (2001)CrossRefGoogle Scholar
  19. 19.
    Herroelen, W., De Reyck, B., Demeulemeester, E.: Resource-constrained project scheduling: a survey of recent developments. Comput. Oper. Res. 25, 279–302 (1998)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Özdamar, L., Ulusoy, G.: A survey on the resource-constrained project scheduling problem. IIE Trans. 27, 574–586 (1995)CrossRefGoogle Scholar
  21. 21.
    Ghoddousi, P., Eshtehardian, E., Jooybanpour, S., Javanmardi, A.: Multi-mode resource-constrained discrete time-cost-resource optimization in project scheduling using non-dominated sorting genetic algorithm. Autom. Constr. 30, 216–227 (2013)CrossRefGoogle Scholar
  22. 22.
    Van Peteghem, V., Vanhoucke, M.: An experimental investigation of metaheuristics for the multi-mode resource-constrained project scheduling problem on new dataset instances. Eur. J. Oper. Res. 235(1), 62–72 (2014)CrossRefGoogle Scholar
  23. 23.
    Zhang, H.: Ant colony optimization for multimode resource-constrained project scheduling. J. Manag. Eng. 28(2), 150–159 (2012)CrossRefGoogle Scholar
  24. 24.
    Talbot, F.B.: Resource-constrained project scheduling with time-resource tradeoffs: the nonpreemptive case. Manag. Sci. 28, 1197–1210 (1982)CrossRefGoogle Scholar
  25. 25.
    Weglarz, J., Józefowska, J., Mika, M., Waligóra, G.: Project scheduling with finite or infinite number of activity processing modes – a survey. Eur. J. Oper. Res. 208, 177–205 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Dorndorf, U., Pesch, E., Phan-Huy, T.: A time-oriented branch-and-bound algorithm for resource-constrained project scheduling with generalised precedence constraints. Manag. Sci. 46(10), 1365–1384 (2000)CrossRefGoogle Scholar
  27. 27.
    Schnell, A., Hartl, R.: On the efficient modeling and solution of the multi-mode resource-constrained project scheduling problem with generalized precedence relations. OR Spectrum 38(2), 283–303 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ballestin, F., Blanco, R.: Theoretical and practical fundamentals for multi-objective optimisation in resource-constrained project scheduling problems. Comput. Oper. Res. 38(1), 51–62 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Artigues, C., Leus, R., Nobibon, F.T.: Robust optimization for resource-constrained project scheduling with uncertain activity durations. Flex. Serv. Manuf. J. 25(1–2), 175–205 (2013)CrossRefGoogle Scholar
  30. 30.
    Bruni, M.E., Pugliese, L.D.P., Beraldi, P., Guerriero, F.: An adjustable robust optimization model for the resource-constrained project scheduling problem with uncertain activity durations. Omega 71, 66–84 (2017)CrossRefGoogle Scholar
  31. 31.
    Besikci, U., Bilge, U., Ulusoy, G.: Multi-mode resource constrained multi-project scheduling and resource portfolio problem. Eur. J. Oper. Res. 240(1), 22–31 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Menesi, W., Hegazy, T.: Multimode resource-constrained scheduling and leveling for practical-size projects. J. Manag. Eng. 31(6) (2015) Google Scholar
  33. 33.
    Wang, L., Fang, C.: An effective shuffled frog-leaping algorithm for multi-mode resource-constrained project scheduling problem. Inf. Sci. 181(20), 4804–4822 (2011)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zamani, R.: An evolutionary search procedure for optimizing time-cost performance of projects under multiple renewable resource constraints. Comput. Ind. Eng. 66(2), 451–460 (2013)CrossRefGoogle Scholar
  35. 35.
    Pritsker, A.A.B., Watters, L.J., Wolfe, P.M.: Multiproject scheduling with limited resources: a zero-one programming approach. Manag. Sci. 16, 93–107 (1969)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Havelsan Inc., ODTU TeknokentAnkaraTurkey
  2. 2.Department of Industrial EngineeringBaskent UniversityEtimesgut, AnkaraTurkey

Personalised recommendations