Advertisement

Modelling 3D Objects Using 2D Sketches Through Radial Renderings of Curvature Maps

  • Frode Eika Sandnes
  • Evelyn Eika
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 793)

Abstract

Modelling 3D objects is challenging; often special software skills are required. This paper explores a new method for experimenting with 3D modelling using two-dimensional drawings. These drawings use coloured areas to dictate the rate of curvature. The curvature images are rendered in a radial manner from the centre to the sides. The method allows complex 3D shapes to be modelled. There is no need to employ any new software program as any arbitrary 2D painting application can be used to sketch objects.

Keywords

Sketching 3D-Modelling 2D hand drawings Design Ideation 

References

  1. 1.
    Black, A.: Visible planning on paper and on screen: the impact of working medium on decision-making by novice graphic designers. Behav. Inf. Technol. 9, 283–296 (1990)CrossRefGoogle Scholar
  2. 2.
    Sandnes, F.E., Jian, H.L.: Sketching with Chinese calligraphy. Interactions 19, 62–66 (2012)CrossRefGoogle Scholar
  3. 3.
    Eika, E., Sandnes, F.E.: Authoring WCAG2.0-compliant texts for the web through text readability visualization. In: Antona, M., Stephanidis, C. (eds.) UAHCI 2016. LNCS, vol. 9737, pp. 49–58. Springer, Cham (2016)Google Scholar
  4. 4.
    Sandnes, F.E., Sinnen, O.: A new strategy for multiprocessor scheduling of cyclic task graphs. Int. J. High Perform. Comput. Netw. 3, 62–71 (2005)CrossRefGoogle Scholar
  5. 5.
    Rebreyend, P., Sandnes, F.E., Megson, G.M.: Static multiprocessor task graph scheduling in the genetic paradigm: A comparison of genotype representations. Research report no. 98-25. Ecole Normale Superieure de Lyon, Laboratoire de Informatique du Parallelisme, Lyon, France (1998)Google Scholar
  6. 6.
    Sandnes, F.E.: Scheduling partially ordered events in a randomised framework: empirical results and implications for automatic configuration management. In: Proceedings of LISA, pp. 47–62. USENIX (2001)Google Scholar
  7. 7.
    Sandnes, F.E.: Evaluating mobile text entry strategies with finite state automata. In: Proceedings of the 7th International Conference on MobileHCI 2005, pp. 115–121. ACM (2005)Google Scholar
  8. 8.
    Sandnes, F.E., Jian, H.L.: Pair-wise variability index: Evaluating the cognitive difficulty of using mobile text entry systems. In: International Conference on MobileHCI 2004. LNCS, vol. 3160, pp. 347–350. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Berget, G., Sandnes, F.E.: Do autocomplete functions reduce the impact of dyslexia on information searching behaviour? a case of Google. J. Am. Soc. Inf. Sci. Technol. 67, 2320–2328 (2016)CrossRefGoogle Scholar
  10. 10.
    Sandnes, F.E., Lundh, M.V.: Calendars for individuals with cognitive disabilities: a comparison of table view and list view. In: Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility, pp. 329–330. ACM (2015)Google Scholar
  11. 11.
    Olsen, L., Samavati, F.F., Sousa, M.C., Jorge, J.A.: Sketch-based modeling: a survey. Comput. Graph. 33, 85–103 (2009)CrossRefGoogle Scholar
  12. 12.
    Kondo, K.: Interactive geometric modeling using freehand sketches. J. Geom. Graph. 13, 195–207 (2009)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Tai, C.L., Zhang, H., Fong, J.C.K.: Prototype modeling from sketched silhouettes based on convolution surfaces. Comput. Graph. Forum 23, 71–83 (2004)CrossRefGoogle Scholar
  14. 14.
    Das, K., Diaz-Gutierrez, P., Gopi, M.: Sketching free-form surfaces using network of curves. In: Proceedings of Eurgraphics Workshop on Sketch-Based Interfaces and Modeling, pp. 127–134. The Eurographics Association (2005)Google Scholar
  15. 15.
    Varley, P.A.C., Martin, R.R, Suzuki, H.: Can machines interpret line drawings. In: Proceedings of Eurgraphics Workshop on Sketch-Based Interfaces and Modelling, pp. 107–116. The Eurographics Association (2004)Google Scholar
  16. 16.
    Naya, F., Jorge, J., Conesa, J., Contero, M., Gomis, J. M.: Direct modeling: from sketches to 3D models. In: Proceedings of the 1st Ibero-American Symposium in Computer Graphics SIACG, pp. 109–117 (2002)Google Scholar
  17. 17.
    Matondang, M.Z., Mardzuki, S., Haron, H.: Transformation of engineering sketch to valid solid object. In: Proceedings of International Conference of the 9th Asia Pacific Industrial Engineering & Management Systems Conference and the 11th Asia Pacific Regional Meeting of International Foundation for Production Research, pp. 2707–2715 (2008)Google Scholar
  18. 18.
    Tolba, O., Dorsey, J., McMillan, L.: Sketching with projective 2d strokes. In: Proceedings of the 12th Annual ACM Symposium on User Interface Software and Technology, pp. 149–157, ACM (1999)Google Scholar
  19. 19.
    Xin, M., Sharlin, E., Sousa, M.C.: Napkin sketch: handheld mixed reality 3D sketching. In: Proceedings of the 2008 ACM Symposium on Virtual Reality Software and Technology. ACM (2008)Google Scholar
  20. 20.
    Triki, O., Zaharia, T.B., Preteux, F.J.: 3D virtual character reconstruction from projections: a NURBS-based approach. In: Electronic Imaging 2004. International Society for Optics and Photonics (2004)Google Scholar
  21. 21.
    Kolomenkin, M., Leifman, G., Shimshoni, I., Tal, A.: Reconstruction of relief objects from line drawings. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2011)Google Scholar
  22. 22.
    Sandnes, F.E.: Communicating panoramic 360 degree immersed experiences: a simple technique for sketching in 3D. In: UAHCI. LNCS, vol. 9738, pp. 338–346. Springer (2016)Google Scholar
  23. 23.
    Sandnes, F.E.: PanoramaGrid – a graph paper tracing framework for sketching 360-degree immersed experiences. In: Proceedings of the International Working Conference on Advanced Visual Interfaces AVI 2016, pp. 342–343. ACM (2016)Google Scholar
  24. 24.
    Sandnes, F.E., Huang, Y.P.: Translating the viewing position in single equirectangular panoramic images. In: Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016), pp. 389–394. IEEE (2016)Google Scholar
  25. 25.
    Sandnes, F.E., Eika, E.: Head-mounted augmented reality displays on the cheap: a DIY approach to sketching and prototyping low-vision assistive technologies, In: Antona, M., Stephanidis, C. (eds.) UAHCI 2017. LNCS, vol. 10278, pp. 168–186. Springer (2017)Google Scholar
  26. 26.
    Sandnes, F.E.: Sketching 3D immersed experiences rapidly by hand through 2D cross sections. In: Auer, M.E. (eds.) REV2017. LNNS, vol 22, pp. 1001–1013. Springer (2017)Google Scholar
  27. 27.
    Gingold, Y., Zorin, D.: Shading-based surface editing. ACM Trans. Graph. 27, 1–9 (2008)Google Scholar
  28. 28.
    Zhang, R., Tsai, P.S., Cryer, J.E., Shah, M.: Shape-from-shading: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 21, 690–706 (1999)CrossRefGoogle Scholar
  29. 29.
    Gouraud, H.: Continuous shading of curved surfaces. IEEE Trans. Comput. C–20, 623–629 (1971)Google Scholar
  30. 30.
    Sandnes, F.E., Lianguzov, Y., Rodrigues, O.V., Lieng, H., Medola, F.O., Pavel, N.: Supporting collaborative ideation through freehand sketching of 3D-shapes in 2D using colour. In: Luo, Y. (ed.) CDVE 2017. LNCS, vol. 10451, pp. 123–134. Springer (2017)Google Scholar
  31. 31.
    Sandnes, F.E., Lianguzov, Y.: Quick and easy 3D modelling for all: a browser-based 3D-sketching framework. iJOE 13, 120–127 (2017)Google Scholar
  32. 32.
    Sandnes, F.E.: Understanding WCAG2.0 color contrast requirements through 3D color space visualization. Stud. Health Technol. Inform. 229, 366–375 (2016)Google Scholar
  33. 33.
    Sandnes, F.E.: On-screen colour contrast for visually impaired readers: Selecting and exploring the limits of WCAG2.0 colours. In: Black, A., Lund, O., Walker, S. (eds.) Information Design: Research and Practice, pp. 405–416. Routledge (2016)Google Scholar
  34. 34.
    Sandnes, F.E., Zhao, A.: A contrast colour selection scheme for WCAG2.0-compliant web designs based on HSV-half-planes. In: Proceedings of SMC 2015, pp. 1233–1237. IEEE (2015)Google Scholar
  35. 35.
    Sandnes, F.E., Zhao, A.: An interactive color picker that ensures WCAG2.0 compliant color contrast levels. Procedia Comput. Sci. 67, 87–94 (2015)Google Scholar
  36. 36.
    Solomon, C.J., Papert, S.: A case study of a young child doing Turtle Graphics in LOGO. In: Proceedings of the National Computer Conference and Exposition, pp. 1049–1056. ACM (1976)Google Scholar
  37. 37.
    Verhoeff, T.: 3D turtle geometry: artwork, theory, program equivalence and symmetry. Int. J. Arts Technol. 3, 288–319 (2010)CrossRefGoogle Scholar
  38. 38.
    Girardeau-Montaut, D.: CloudCompare-Open Source project. OpenSource Project (2011)Google Scholar
  39. 39.
    Gomez, J.V., Sandnes, F.E.: RoboGuideDog: guiding blind users through physical environments with laser range scanners. Procedia Comput. Sci. 14, 218–225 (2012)CrossRefGoogle Scholar
  40. 40.
    Sandnes, F.E.: Where was that photo taken? deriving geographical information from image collections based on temporal exposure attributes. Multimed. Syst. 16, 309–318 (2010)CrossRefGoogle Scholar
  41. 41.
    Sandnes, F.E.: Determining the geographical location of image scenes based on object shadow lengths. J. Sig. Process. Syst. 65, 35–47 (2011)CrossRefGoogle Scholar
  42. 42.
    Huang, Y.P., Wang, S.S., Sandnes, F.E.: RFID-based guide gives museum visitors more freedom. IT Prof. Mag. 13, 25 (2011)CrossRefGoogle Scholar
  43. 43.
    Huang, Y.P., Chang, Y.T., Sandnes, F.E.: Ubiquitous information transfer across different platforms by QR codes. J. Mob. Multimed. 6, 3–13 (2010)Google Scholar
  44. 44.
    Huang, Y.P., Chang, T.W., Chen, Y.R., Sandnes, F.E.: A back propagation based real-time license plate recognition system. Int. J. Pattern Recognit. Artif. Intell. 22, 233–251 (2008)CrossRefGoogle Scholar
  45. 45.
    Huang, Y.P., Chiou, C.L., Sandnes, F.E.: An intelligent strategy for the automatic detection of highlights in tennis video recordings. Expert Syst. Appl. 36, 9907–9918 (2009)CrossRefGoogle Scholar
  46. 46.
    Huang, Y.P., Hsu, L.W., Sandnes, F.E.: An intelligent subtitle detection model for locating television commercials. IEEE Trans. Man Cybern. B 37, 485–492 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science, Faculty of Technology, Art and DesignOsloMet – Oslo Metropolitan UniversityOsloNorway
  2. 2.Westerdals Oslo School of Art, Communication and TechnologyOsloNorway

Personalised recommendations