Advertisement

Generalized Continua and Phase-Field Models: Application to Crystal Plasticity

  • Samuel ForestEmail author
  • Kais Ammar
  • Benoit Appolaire
  • Victor de Rancourt
  • Stephan Wulfinghoff
Chapter
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 587)

Abstract

Three continuum field theories are presented that account for the size-dependent behaviour of materials. The micromorphic medium is endowed with microdeformation degrees of freedom that describe the rotation and distortion of a triad of microstructural directions, like crystallographic lattice directions. It is a very general framework that can be specialized to strain gradient plasticity theory dedicated to the modelling of plastic events in metals and alloys. Both frameworks are developed here in the special case of crystal plasticity as a complete example of transition from micro-physical phenomena to continuum macro-modelling. Finally the phase field method is introduced in this landscape as a continuum modelling approach to the motion of phase boundaries and interfaces driven by thermodynamics and mechanics.

References

  1. G. Abrivard, E.P. Busso, S. Forest, B. Appolaire, Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part I: theory and numerical implementation. Philos. Mag. 92, 3618–3642 (2012a)Google Scholar
  2. G. Abrivard, E.P. Busso, S. Forest, B. Appolaire, Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part II: application to recrystallisation. Philos. Mag. 92 3643–3664 (2012b)Google Scholar
  3. E.C. Aifantis, The physics of plastic deformation. Int. J. Plast. 3, 211–248 (1987)zbMATHCrossRefGoogle Scholar
  4. H. Altenbach, G.A. Maugin, V. Erofeev, Mechanics of Generalized Continua. Advanced Structured Materials, vol. 7 (Springer, Berlin, 2011)Google Scholar
  5. K. Ammar, B. Appolaire, G. Cailletaud, S. Forest, Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media. Eur. J. Comput. Mech. 18, 485–523 (2009)zbMATHCrossRefGoogle Scholar
  6. K. Ammar, B. Appolaire, G. Cailletaud, S. Forest, Phase field modeling of elasto-plastic deformation induced by diffusion controlled growth of a misfitting spherical precipitate. Philos. Mag. Lett. 91, 164–172 (2011)CrossRefGoogle Scholar
  7. K. Ammar, B. Appolaire, S. Forest, M. Cottura, Y. Le Bouar, A. Finel, Modelling inheritance of plastic deformation during migration of phase boundaries using a phase field method. Meccanica 49, 2699–2717 (2014). https://doi.org/10.1007/s11012-014-0011-1 MathSciNetzbMATHCrossRefGoogle Scholar
  8. B. Appolaire, E. Aeby-Gautier, J.D. Teixeira, M. Dehmas, S. Denis, Non-coherent interfaces in diffuse interface models. Philos. Mag. 90, 461–483 (2010)CrossRefGoogle Scholar
  9. R.J. Asaro, Elastic–plastic memory and kinematic hardening. Acta Metall. 23, 1255–1265 (1975)CrossRefGoogle Scholar
  10. R.J. Asaro, V.A. Lubarda, Mechanics of Solids and Materials (University Press, Cambridge, 2006)zbMATHCrossRefGoogle Scholar
  11. M.F. Ashby, The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399–424 (1970)CrossRefGoogle Scholar
  12. V.L. Berdichevsky, On thermodynamics of crystal plasticity. Scr. Mater. 54, 711–716 (2006)CrossRefGoogle Scholar
  13. J. Besson, G. Cailletaud, J.-L. Chaboche, S. Forest, M. Blétry, Non-linear Mechanics of Materials. Series: Solid Mechanics and Its Applications, vol. 167 (Springer, New York, 2009), 433 p. ISBN: 978-90-481-3355-0Google Scholar
  14. A. Bösch, H. Müller-Krumbhaar, O. Shochet, Phase-field models for moving boundary problems: controlling metastability and anisotropyi. Z. Phys. 97, 367–377 (1995)CrossRefGoogle Scholar
  15. E.P. Busso, G. Cailletaud, On the selection of active slip systems in crystal plasticity. Int. J. Plast. 21, 2212–2231 (2005)zbMATHCrossRefGoogle Scholar
  16. J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. I. interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)Google Scholar
  17. J.W. Cahn, F. Larché, A simple model for coherent equilibrium. Acta Metall. 32, 1915–1923 (1984)CrossRefGoogle Scholar
  18. P. Cermelli, M.E. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49, 1539–1568 (2001)zbMATHCrossRefGoogle Scholar
  19. H.J. Chang, N.M. Cordero, C. Déprés, M. Fivel, S. Forest, Micromorphic crystal plasticity versus discrete dislocation dynamics analysis of multilayer pile-up hardening in a narrow channel. Arch. Appl. Mech. 86, 21–38 (2016). https://doi.org/10.1007/s00419-015-1099-z CrossRefGoogle Scholar
  20. B.D. Coleman, W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  21. S. Conti, M. Ortiz, Dislocation microstructures and the effective behavior of single crystals. Arch. Ration. Mech. Anal. 176, 103–147 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  22. N.M. Cordero, A. Gaubert, S. Forest, E.P. Busso, F. Gallerneau, S. Kruch, Size effects in generalised continuum crystal plasticity for two-phase laminates. J. Mech. Phys. Solids 58, 1963–1994 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  23. N.M. Cordero, S. Forest, E.P. Busso, S. Berbenni, M. Cherkaoui, Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals. Commun. Math. Sci. 52, 7–13 (2012)CrossRefGoogle Scholar
  24. M. Cottura, Y. Le Bouar, A. Finel, B. Appolaire, K. Ammar, S. Forest, A phase field model incorporating strain gradient viscoplasticity: application to rafting in Ni-base superalloys. J. Mech. Phys. Solids 60, 1243–1256 (2012)MathSciNetCrossRefGoogle Scholar
  25. M. Cottura, B. Appolaire, A. Finel, Y. Le Bouar, Plastic relaxation during diffusion-controlled growth of widmanstätten plates. Scr. Mater. 108, 117–121 (2015). https://doi.org/10.1016/j.scriptamat.2015.06.032 CrossRefGoogle Scholar
  26. S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics (Dover, North Holland, 1962–1984)Google Scholar
  27. V. de Rancourt, Odelling the oxidation of polycristalline austenitic stainless steels using a phase field approach coupled with mechanics. PhD, Mines ParisTech (2015)Google Scholar
  28. V. de Rancourt, B. Appolaire, S. Forest, K. Ammar, Homogenization of viscoplastic constitutive laws within a phase field approach. J. Mech. Phys. Solids 88, 35–48 (2016). https://doi.org/10.1016/j.jmps.2015.12.026 MathSciNetCrossRefGoogle Scholar
  29. C. Déprés, C.F. Robertson, M.C. Fivel, Low-strain fatigue in aisi 316l steel surface grains: a three-dimensional discrete dislocation dynamics modelling of the early cycles i. dislocation microstructures and mechanical behaviour. Philos. Mag. 84(22), 2257–2275 (2004). https://doi.org/10.1080/14786430410001690051 CrossRefGoogle Scholar
  30. W. Dreyer, W.H. Müller, A study of the coarsening in tin/lead solders. Int. J. Solids Struct. 37, 3841–3871 (2000)zbMATHCrossRefGoogle Scholar
  31. A. Durga, P. Wollants, N. Moelans, Evaluation of interfacial excess contributions in different phase-field models for elastically inhomogeneous systems. Model. Simul. Mater. Sci. Eng. 21, 055018 (2013)CrossRefGoogle Scholar
  32. J.D. Embury, A. Deschamps, Y. Brechet, The interaction of plasticity and diffusion controlled precipitation reactions. Scr. Mater. 49, 927–932 (2003)CrossRefGoogle Scholar
  33. A.C. Eringen, E.S. Suhubi, Nonlinear theory of simple microelastic solids. Int. J. Eng. Sci. 2, 189–203, 389–404 (1964)Google Scholar
  34. B. Fedelich, A microstructural model for the monotonic and the cyclic mechanical behavior of single crystals of superalloys at high temperatures. Int. J. Mech. Sci. 18, 1–49 (2002)zbMATHGoogle Scholar
  35. A. Finel, Y. Le Bouar, A. Gaubert, U. Salman, Phase field methods: Microstructures, mechanical properties and complexity. C. R. Phys. 11, 245–256 (2010)CrossRefGoogle Scholar
  36. N.A. Fleck, J.W. Hutchinson, Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)zbMATHCrossRefGoogle Scholar
  37. S. Forest, Some links between cosserat, strain gradient crystal plasticity and the statistical theory of dislocations. Philos. Mag. 88, 3549–3563 (2008)CrossRefGoogle Scholar
  38. S. Forest, The micromorphic approach for gradient elasticity, viscoplasticity and damage. ASCE J. Eng. Mech. 135, 117–131 (2009)CrossRefGoogle Scholar
  39. S. Forest, Generalized continuum modelling of crystal plasticity, in ed. by C. Sansour, S. Skatulla. Generalized Continua and Dislocation Theory. CISM International Centre for Mechanical Sciences, Courses and Lectures, vol. 537 (Springer, Berlin, 2012a), pp. 181–287zbMATHCrossRefGoogle Scholar
  40. S. Forest, Micromorphic media, in ed. by H. Altenbach, V. Eremeyev, Generalized Continua – from the Theory to Engineering Applications. CISM International Centre for Mechanical Sciences, Courses and Lectures, vol. 541 (Springer, Berlin, 2012b), pp. 249–300Google Scholar
  41. S. Forest, N. Guéninchault, Inspection of free energy functions in gradient crystal plasticity. Acta Mech. Sinica 29, 763–772 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  42. S. Forest, R. Sedláček, Plastic slip distribution in two–phase laminate microstructures: dislocation–based vs. generalized–continuum approaches. Philos. Mag. A 83, 245–276 (2003)CrossRefGoogle Scholar
  43. S. Forest, R. Sievert, Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)zbMATHCrossRefGoogle Scholar
  44. S. Forest, R. Sievert, Nonlinear microstrain theories. Int. J. Solids Struct. 43, 7224–7245 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  45. S. Forest, K. Ammar, B. Appolaire, N.M. Cordero, A. Gaubert, Micromorphic approach to crystal plasticity and phase transformation, in J. Schroeder, K. Hackl, Plasticity and Beyond. CISM International Centre for Mechanical Sciences, Courses and Lectures, vol. 550 (Springer, New York, 2014), pp. 131–198zbMATHCrossRefGoogle Scholar
  46. F. François, A. Pineau, A. Zaoui, Mechanical Behaviour of Materials. Volume 1: Micro and Macroscopic Constitutive Behaviour. Solid Mechanics and its Applications, vol. 180 (Springer, New York, 2012)Google Scholar
  47. T. Frolov, Y. Mishin, Thermodynamics of coherent interfaces under mechanical stresses. I. Theory. Phys. Rev. B 85, 224106 (2012).  https://doi.org/10.1103/PhysRevB.85.224106 CrossRefGoogle Scholar
  48. A. Gaubert, A. Finel, Y. Le Bouar, G. Boussinot, Viscoplastic phase field modellling of rafting in ni base superalloys, in Continuum Models and Discrete Systems CMDS11 (Mines Paris Les Presses, 2008), pp. 161–166Google Scholar
  49. A. Gaubert, Y. Le Bouar, A. Finel, Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys. Philos. Mag. 90, 375–404 (2010)CrossRefGoogle Scholar
  50. M.G.D. Geers, R.H.J. Peerlings, M.A. Peletier, L. Scardia, Asymptotic behaviour of a pile–up of infinite walls of edge dislocations. Arch. Ration. Mech. Anal. 209, 495–539 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  51. P. Germain, The method of virtual power in continuum mechanics. Part 2 : Microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)zbMATHCrossRefGoogle Scholar
  52. P. Germain, Q.S. Nguyen, P. Suquet, Continuum thermodynamics. J. Appl. Mech. 50, 1010–1020 (1983)zbMATHCrossRefGoogle Scholar
  53. P.A. Geslin, B. Appolaire, A. Finel, Investigation of coherency loss by prismatic punching with a nonlinear elastic model. Acta Mater. 71, 80–88 (2014)CrossRefGoogle Scholar
  54. I. Groma, F.F. Csikor, M. Zaiser, Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater. 51, 1271–1281 (2003)CrossRefGoogle Scholar
  55. I. Groma, G. Györgyi, B. Kocsis, Dynamics of coarse grain grained dislocation densities from an effective free energy. Philos. Mag. 87, 1185–1199 (2007)CrossRefGoogle Scholar
  56. X.H. Guo, S.Q. Shi, X.Q. Ma, Elastoplastic phase field model for microstructure evolution. Appl. Phys. Lett. 87(22), 221910 (2005). https://doi.org/10.1063/1.2138358 CrossRefGoogle Scholar
  57. M.E. Gurtin, Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  58. M.E. Gurtin, A gradient theory of single–crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  59. M.E. Gurtin, L. Anand, Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J. Mech. Phys. Solids 57, 405–421 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  60. W. Han, B.D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis (Springer, New York, 2013)zbMATHCrossRefGoogle Scholar
  61. D.E. Hurtado, M. Ortiz, Finite element analysis of geometrically necessary dislocations in crystal plasticity. Int. J. Numer. Methods Eng. 93(1), 66–79 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  62. S.W. Husain, M.S. Ahmed, I. Qamar, Dendritic morphology observed in the solid-state precipitation in binary alloys. Metal. Mater. Trans. A 30, 1529–1534 (1999)CrossRefGoogle Scholar
  63. W.C. Johnson, On the inapplicability of Gibbs phase rule to coherent solids. Metall. Trans. A 18, 1093–1097 (1987)CrossRefGoogle Scholar
  64. R. Kametani, K. Kodera, D. Okumura, N. Ohno, Implicit iterative finite element scheme for a strain gradient crystal plasticity model based on self-energy of geometrically necessary dislocations. Commun. Math. Sci. 53(1), 53–59 (2012)CrossRefGoogle Scholar
  65. S.G. Kim, W.T. Kim, T. Suzuki, Phase-field model for binary alloys. Phys. Rev. E 60, 7186–7197 (1999)CrossRefGoogle Scholar
  66. P.H. Leo, R.F. Sekerka, The effect of elastic fields on the morphological stability of a precipitate grown from solid solution. Acta Metal. 37, 3139–3149 (1989)CrossRefGoogle Scholar
  67. J. Mandel, Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int. J. Solids Struct. 9, 725–740 (1973)zbMATHCrossRefGoogle Scholar
  68. G.A. Maugin, Thermomechanics of Plasticity and Fracture (Cambridge University Press, Cambridge, 1992)zbMATHCrossRefGoogle Scholar
  69. G.A. Maugin, Thermomechanics of Nonlinear Irreversible Behaviors (World Scientific, Singapore, 1999)zbMATHCrossRefGoogle Scholar
  70. G.A. Maugin, A.V. Metrikine, Mechanics of Generalized Continua, One Hundred Years After the Cosserats. Advances in Mechanics and Mathematics, vol. 21 (Springer, New York, 2010)Google Scholar
  71. S.D. Mesarovic, R. Baskaran, A. Panchenko, Thermodynamic coarsening of dislocation mechanics and the size-dependent continuum crystal plasticity. J. Mech. Phys. Solids 58(3), 311–329 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  72. S.D. Mesarovic, S. Forest, J.P. Jaric, Size-dependent energy in crystal plasticity and continuum dislocation models. Proc. R. Soc. A 471, 20140868 (2015).  https://doi.org/10.1098/rspa.2014.0868 MathSciNetzbMATHCrossRefGoogle Scholar
  73. C. Miehe, S. Mauthe, F.E. Hildebrand, Variational gradient plasticity at finite strains. Part III: local-global updates and regularization techniques in multiplicative plasticity for single crystals. Comput. Methods Appl. Mech. Eng. 268, 735–762 (2014)zbMATHGoogle Scholar
  74. R.D. Mindlin, Micro–structure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51–78 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  75. R.D. Mindlin, Second gradient of strain and surface–tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)CrossRefGoogle Scholar
  76. J. Mosler, O. Shchyglo, H. Montazer Hojjat, A novel homogenization method for phase field approaches based on partial rank-one relaxation. J. Mech. Phys. Solids 68, 251–266 (2014). https://doi.org/10.1016/j.jmps.2014.04.002 MathSciNetzbMATHCrossRefGoogle Scholar
  77. I. Müller, Thermodynamics of mixtures and phase field theory. Int. J. Solids Struct. 38, 1105–1113 (2001)zbMATHCrossRefGoogle Scholar
  78. W.W. Mullins, R.F. Sekerka, Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34, 323–329 (1963). https://doi.org/10.1063/1.1702607 CrossRefGoogle Scholar
  79. J.F. Nye, Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)CrossRefGoogle Scholar
  80. N. Ohno, D. Okumura, Higher-order stress and grain size effects due to self energy of geometrically necessary dislocations. J. Mech. Phys. Solids 55, 1879–1898 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  81. N. Ohno, D. Okumura, Grain–size dependent yield behavior under loading, unloading and reverse loading. Int. J. Mod. Phys. B 22, 5937–5942 (2008)CrossRefGoogle Scholar
  82. M. Ortiz, E.A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  83. H. Proudhon, W.J. Poole, X. Wang, Y. Bréchet, The role of internal stresses on the plastic deformation of the Al–Mg–Si–Cu alloy AA611. Philos. Mag. 88, 621–640 (2008)CrossRefGoogle Scholar
  84. J. Qu, M. Cherkaoui, Fundamentals of Micromechanics of Solids (John Wiley and Sons Inc, Hoboken, 2006)Google Scholar
  85. B.D. Reddy, C. Wieners, B. Wohlmuth, Finite element analysis and algorithms for single-crystal strain-gradient plasticity. Int. J. Numer. Methods Eng. 90(6), 784–804 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  86. R. Spatschek, B. Eidel, Driving forces for interface kinetics and phase field models. Int. J. Solids Struct. 50, 2424–2436 (2013)CrossRefGoogle Scholar
  87. I. Steinbach, Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17(7), 073001 (2009)CrossRefGoogle Scholar
  88. I. Steinbach, M. Apel, Multi phase field model for solid state transformation with elastic strain. Physica D 217(2), 153–160 (2006)zbMATHCrossRefGoogle Scholar
  89. P. Steinmann, Views on multiplicative elastoplasticity and the continuum theory of dislocations. Int. J. Eng. Sci. 34, 1717–1735 (1996)zbMATHCrossRefGoogle Scholar
  90. R.E. Stoltz, R.M. Pelloux, Cyclic deformation and Bauschinger effect in Al–Cu–Mg alloys. Scr. Metall. 8, 269–276 (1974)CrossRefGoogle Scholar
  91. R.E. Stoltz, R.M. Pelloux, The Bauschinger effect in precipitation strengthened aluminum alloys. Metall. Trans. A 7, 1295–1306 (1976)CrossRefGoogle Scholar
  92. B. Svendsen, S. Bargmann, On the continuum thermodynamic rate variational formulation of models for extended crystal plasticity at large deformation. J. Mech. Phys. Solids 58(9), 1253–1271 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  93. R. Taillard, A. Pineau, Room temperature tensile properties of Fe-19wt.% Cr alloys precipitation hardened by the intermetallic compound NiAl. Mater. Sci. Eng. 56, 219–231 (1982)CrossRefGoogle Scholar
  94. J. Tiaden, B. Nestler, H.J. Diepers, I. Steinbach, The multiphase-field model with an integrated concept for modelling solute diffusion. Physica D 115, 73–86 (1998)zbMATHCrossRefGoogle Scholar
  95. R.L.J.M. Ubachs, P.J.G. Schreurs, M.G.D. Geers, Phase field dependent viscoplastic behaviour of solder alloys. Int. J. Solids Struct. 42, 2533–2558 (2005)zbMATHCrossRefGoogle Scholar
  96. T.T. Uehara, T. Tsujino, N. Ohno, Elasto-plastic simulation of stress evolution during grain growth using a phase field model. J. Cryst. Growth 300, 530–537 (2007)CrossRefGoogle Scholar
  97. A. Villani, E.P. Busso, K. Ammar, S. Forest, M.G.D. Geers, A fully coupled diffusional-mechanical formulation: numerical implementation, analytical validation, and effects of plasticity on equilibrium. Arch. Appl. Mech. 84, 1647–1664 (2014)zbMATHCrossRefGoogle Scholar
  98. Y. Wang, A.G. Khachaturyan, J.W. Jr Morris, Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap. Acta Metall. Mater. 41, 279–296 (1993)CrossRefGoogle Scholar
  99. S. Wulfinghoff, T. Böhlke, Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics. Proc. R. Soc. A: Math. Phys. Eng. Sci. 468(2145), 2682–2703 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  100. S. Wulfinghoff, E. Bayerschen, T. Böhlke, A gradient plasticity grain boundary yield theory. Int. J. Plast. 51, 33–46 (2013)CrossRefGoogle Scholar
  101. S. Wulfinghoff, S. Forest, T. Böhlke, Strain gradient plasticity modeling of the cyclic behavior of laminate microstructures. J. Mech. Phys. Solids 79, 1–20 (2015). https://doi.org/10.1016/j.jmps.2015.02.008 MathSciNetzbMATHCrossRefGoogle Scholar
  102. A. Zaoui, Continuum micromechanics: survey. ASCE J. Eng. Mech. 128, 808–816 (2002)CrossRefGoogle Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2019

Authors and Affiliations

  • Samuel Forest
    • 1
    Email author
  • Kais Ammar
    • 1
  • Benoit Appolaire
    • 2
  • Victor de Rancourt
    • 1
  • Stephan Wulfinghoff
    • 3
  1. 1.Centre des MatériauxMines ParisTech CNRSParisFrance
  2. 2.Institut Jean LamourUniversity of LorraineNancyFrance
  3. 3.Institute of Applied MechanicsRWTH Aachen UniversityAachenGermany

Personalised recommendations