Advertisement

Periglacial Morphodynamics in the Upper Kaunertal

  • Jana-Marie DusikEmail author
  • Matthias Leopold
  • Florian Haas
Chapter
Part of the Geography of the Physical Environment book series (GEOPHY)

Abstract

Proglacial areas represent transitional zones between glacial and periglacial landscapes. Non-glacial processes in the proglacial zone might evolve under periglacial conditions, and vice versa periglacial processes often occur in proglacial zones. Hence, periglacial morphodynamics constitute an inherent part of proglacial studies and are therefore presented here in the context of the research project PROSA. To get an overview of periglacial morphodynamics in the Upper Kaunertal, we (i) established a permafrost model based on BTS measurements, (ii) analysed meteorological data in order to verify ground indications for thermal-contraction cracking and (iii) analysed both geophysical and remote sensing data for the identification of permafrost creep and thermokarst phenomena. In addition, this chapter includes a case study on the morphodynamics of a complex rock glacier in the Riffltal, a tributary valley to the Upper Kaunertal. Results show a diverse genesis and development of different rock glacier parts and lobes, which are mainly related to glacial advances during the Egesen and LIA stadials. More recent developments are largely dependent on (i) sediment sources and pathways constituting diverse states of activity, (i) dynamic interactions between the tongues and (iii) the topographic surrounding, that is already causing dynamic inactivity of parts of the rock glacier.

Keywords

PROSA project Geophysical measurements Permafrost model Rock glaciers Surface changes 

References

  1. Anderson JG (1906) Solifluction, a component of Subaërial Denudation. J Geol 14:91–112CrossRefGoogle Scholar
  2. Arenson LU, Jakob M (2015) Periglacial geohazard risks and ground temperature increases. In: Lollino G (ed) Engineering geology for society and territory. Springer, Cham, pp 233–237Google Scholar
  3. Arenson LU, Colgan W, Marshall HP (2014) Physical, thermal, and mechanical properties of snow, ice, and permafrost. In: Haeberli W, Whiteman C, Shroder JF (eds) Snow and ice-related hazards, risks, and disasters. Elsevier Science, pp 35–75Google Scholar
  4. Barsch D (1969) Studien und Messungen an Blockgletschern in Macun, Unterengadin. Zeitschrift für Geomorphologie. N. F. Supplement 8:11–30Google Scholar
  5. Barsch D (1996) Rockglaciers: indicators for the present and former geoecology in high mountain environments. Springer, BerlinCrossRefGoogle Scholar
  6. Berger J, Krainer K, Mostler W (2004) Dynamics of an active rock glacier (Ötztal Alps, Austria). Quat Res 62:233–242CrossRefGoogle Scholar
  7. Beylich AA, Warburton J (2007) SEDIFLUX Manual: analysis of source-to-sink fluxes and sediment budgets in changing high-latitude and high-altitude cold environments. Geol Surv Norway Publ 2007:053Google Scholar
  8. Boeckli L, Brenning A, Gruber S, Noetzli J (2012) A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges. The Cryosphere 6:125–140.  https://doi.org/10.5194/tc-6-125-2012CrossRefGoogle Scholar
  9. Debella-Gilo M, Kääb A (2011) Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized cross-correlation. Remote Sens Environ 115:130–142.  https://doi.org/10.1016/j.rse.2010.08.012CrossRefGoogle Scholar
  10. Dusik J-M, Leopold M, Heckmann T, Haas F, Hilger L, Morche D, Neugirg F, Becht M (2015) Influence of glacier advance on the development of the multipart Riffeltal rock glacier, Central Austrian Alps. Earth Surf Process Land 40:965–980.  https://doi.org/10.1002/esp.3695CrossRefGoogle Scholar
  11. Ebohon B, Schrott L (2008) Modeling mountain permafrost distribution: a new permafrost map of Austria. In: Ninth international conference on permafrostGoogle Scholar
  12. Etzelmüller B (2013) Recent advances in mountain permafrost research. Permafrost Periglac Process 24:99–107.  https://doi.org/10.1002/ppp.1772CrossRefGoogle Scholar
  13. Etzelmüller B, Heggem ESF, Sharkhuu N, Frauenfelder R, Kääb A, Goulden C (2006) Mountain permafrost distribution modelling using a multi-criteria approach in the Hövsgöl area, Northern Mongolia. Permafrost Periglac Process 17:91–104.  https://doi.org/10.1002/ppp.554CrossRefGoogle Scholar
  14. Etzelmüller B, Farbrot H, Guðmundsson Á, Humlum O, Tveito OE, Björnsson H (2007) The regional distribution of mountain permafrost in Iceland. Permafrost Periglac Process 18:185–199.  https://doi.org/10.1002/ppp.583CrossRefGoogle Scholar
  15. Farbrot H, Isaksen K, Etzelmüller B, Gisnås K (2013) Ground thermal regime and permafrost distribution under a changing climate in Northern Norway. Permafrost Periglac Process 24:20–38.  https://doi.org/10.1002/ppp.1763CrossRefGoogle Scholar
  16. French H, Thorn CE (2006) The changing nature of periglacial geomorphology. Géomorphologie: relief, processus, environnement 12.  https://doi.org/10.4000/geomorphologie.119
  17. French HM (2007) The periglacial environment, 3rd edn. Wiley, Chichester [u.a.]CrossRefGoogle Scholar
  18. Gorbunov AP, Marchenko SS, Seversky EV (2004) The thermal environment of blocky materials in the mountains of Central Asia. Permafrost Periglac Process 15:95–98CrossRefGoogle Scholar
  19. Gruber S, Hoelzle M (2001) Statistical modelling of mountain permafrost distribution: local calibration and incorporation of remotely sensed data. Permafrost Periglac Process 12:69–77.  https://doi.org/10.1002/ppp.374CrossRefGoogle Scholar
  20. Guodong C, Dramis F (1992) Distribution of mountain permafrost and climate. Permafrost Periglac Process 3:83–91.  https://doi.org/10.1002/ppp.3430030205CrossRefGoogle Scholar
  21. Haeberli W (1973) Die Basis-Temperatur der winterlichen Schneedecke als möglicher Indikator für die Verbreitung von Permafrost in den Alpen. Zeitschrift für Gletscherkunde und Glazialgeologie IX:221–227Google Scholar
  22. Haeberli W (1975) Untersuchungen zur Verbreitung von Permafrost zwischen Flüelapass und Piz Grialetsch (GR). Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, vol 17. Eidgenössische Technische Hochschule Zürich, ZürichGoogle Scholar
  23. Haeberli W (1985) Creep of mountain permafrost: internal structure and flow of alpine rock glaciers. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, vol 77. Eidgenössische Technische Hochschule Zürich, ZürichGoogle Scholar
  24. Haeberli W (2000) Modern research perspectives relating to permafrost creep and rock glaciers: a discussion. Permafrost Periglac Process 11:290–293.  https://doi.org/10.1002/1099-1530(200012)11:4%3C290:AID-PPP372%3E3.0.CO;2-0CrossRefGoogle Scholar
  25. Haeberli W (2013) Mountain permafrost—research frontiers and a special long-term challenge. Cold Reg Sci Technol 96:71–76.  https://doi.org/10.1016/j.coldregions.2013.02.004CrossRefGoogle Scholar
  26. Haeberli W, Patzelt G (1982) Permafrostkartierung im Gebiet der Hochebenkar-Blockgletscher, Obergurgl Ötztaler Alpen. Z Gletscherk Glazialgeol 18:127–150Google Scholar
  27. Haeberli W, Hoelzle M, Kääb A, Keller F, Vonder Mühll D (1998) Ten years after drilling through the permafrost of the active rockglacier Murtèl, Eastern Swiss Alps: Answered questions and new perspectives. In: Seventh international permafrost conference: Proceedings, Yellowknife, pp 403–410Google Scholar
  28. Haeberli W, Hallet B, Arenson L, Elconin R, Humlum O, Kääb A, Kaufmann V, Ladanyi B, Matsuoka N, Springman S, Vonder Mühll D (2006) Permafrost creep and rock glacier dynamics. Permafrost Periglac Process 17:189–214.  https://doi.org/10.1002/ppp.561CrossRefGoogle Scholar
  29. Harris C, Murton JB (2005) Interactions between glaciers and permafrost: an introduction. Geol Soc 242:1–9.  https://doi.org/10.1144/GSL.SP.2005.242.01.01 (London, Special Publications)CrossRefGoogle Scholar
  30. Harris C, Haeberli W, Vonder Mühll D, King LJ (2001) Permafrost monitoring in the high mountains of Europe: the PACE Project in its global context. Permafrost Periglac Process 12:3–11.  https://doi.org/10.1002/ppp.377CrossRefGoogle Scholar
  31. Harris SA, Pedersen DE (1998) Thermal regimes beneath coarse blocky materials. Permafrost Periglac Process 9:107–120CrossRefGoogle Scholar
  32. Hauck C, Kneisel C (2008) Applied geophysics in periglacial environments. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  33. Hauck C, Isaksen K, Vonder Mühll D, Sollid JL (2004) Geophysical surveys designed to delineate the altitudinal limit of mountain permafrost: an example from Jotunheimen, Norway. Permafrost Periglac Process 15:191–205.  https://doi.org/10.1002/ppp.493CrossRefGoogle Scholar
  34. Hausmann H, Krainer K, Brückl E, Mostler W (2007a) Creep of two alpine rock glaciers: observation and modelling (Ötztal- and Stubai Alps, Austria). Grazer Schriften der Geographie und Raumforschung 43:145–150Google Scholar
  35. Hausmann H, Krainer K, Brückl E, Mostler W (2007b) Creep of two alpine rock glaciers: observation and modelling (Ötztal- and Stubai Alps, Austria). Grazer Schriften der Geographie und Raumforschung 43:145–150Google Scholar
  36. Hausmann H, Krainer K, Brückl E, Mostler W (2007c) Internal structure and ice content of Reichenkar rock glacier (Stubai Alps, Austria) assessed by geophysical investigations. Permafrost Periglac Process 18:351–367.  https://doi.org/10.1002/ppp.601CrossRefGoogle Scholar
  37. Hausmann H, Krainer K, Brückl E, Ullrich C (2012) Internal structure, ice content and dynamics of Ölgrube and Kaiserberg rock glaciers (Ötztal Alps, Austria) determined from geophysical surveys. Austrian J Earth Sci 105:12–31Google Scholar
  38. Hilbich C, Hauck C, Hoelzle M, Scherler M, Schudel L, Völksch I, Vonder Mühll D, Mäusbacher R (2008) Monitoring mountain permafrost evolution using electrical resistivity tomography: a 7-year study of seasonal, annual, and long-term variations at Schilthorn, Swiss Alps. J Geophys Res 113.  https://doi.org/10.1029/2007jf000799
  39. Hilbich C, Marescot L, Hauck C, Loke MH, Mäusbacher R (2009) Applicability of electrical resistivity tomography monitoring to coarse blocky and ice-rich permafrost landforms. Permafrost Periglac Process 20:269–284.  https://doi.org/10.1002/ppp.652CrossRefGoogle Scholar
  40. Hoelzle M (1992) Permafrost occurrence from BTS measurements and climatic parameters in the eastern Swiss Alps. Permafrost Periglac Process 3:143–147.  https://doi.org/10.1002/ppp.3430030212CrossRefGoogle Scholar
  41. Hoelzle M, Wegmann M, Krummenacher B (1999) Miniature temperature dataloggers for mapping and monitoring of permafrost in high mountain areas: first experience from the Swiss Alps. Permafrost Periglac Process 10:113–124.  https://doi.org/10.1002/(SICI)1099-1530(199904/06)10:2%3C113:AID-PPP317%3E3.0.CO;2-ACrossRefGoogle Scholar
  42. Hoelzle M, Mittaz C, Etzelmüller B, Haeberli W (2001) Surface energy fluxes and distribution models of permafrost in European mountain areas: an overview of current developments. Permafrost Periglac Process 12:53–68.  https://doi.org/10.1002/ppp.385CrossRefGoogle Scholar
  43. Hoffmann T, Schrott L (2003) Determining sediment thickness of talusslopes and valley fill deposits using seismic refraction: a comparison of 2D interpretation tools. Z Geomorph NF (Suppl):71–87Google Scholar
  44. Ishikawa M (2003) Thermal regimes at the snow–ground interface and their implications for permafrost investigation. Periglac Geomorphol Beginning 21st Century 52:105–120.  https://doi.org/10.1016/s0169-555x(02)00251-9CrossRefGoogle Scholar
  45. Ishikawa M, Hirakawa K (2000) Mountain permafrost distribution based on BTS measurements and DC resistivity soundings in the Daisetsu Mountains, Hokkaido, Japan. Permafrost Periglac Process 11.  https://doi.org/10.1002/1099-1530(200004/06)11:2%3C109:aid-ppp343%3E3.0.co;2-o
  46. Jäckli H (1957) Gegenwartsgeologie des bündnerischen Rheingebietes: Ein Beitrag zur exogenen Dynamik alpiner Gebirgslandschaften. Beiträge zur Geologie der Schweiz: Geotechnische Serie, vol 36. Kümmerly & Frey, BernGoogle Scholar
  47. Kääb A, Kneisel C (2006) Permafrost creep within a recently deglaciated glacier forefield: Muragl, Swiss Alps. Permafrost Periglac Process 17:79–85.  https://doi.org/10.1002/ppp.540CrossRefGoogle Scholar
  48. Kääb A, Frauenfelder R, Roer I (2007) On the response of rockglacier creep to surface temperature increase. Glob Planet Change 56:172–187.  https://doi.org/10.1016/j.gloplacha.2006.07.005CrossRefGoogle Scholar
  49. Kaufmann V, Ladstädter R (2003) Quantitative analysis of rock glacier creep by means of digital photogrammetry using multi-temporal aerial photographs: two case studies in the Austrian Alps, pp 525–530Google Scholar
  50. Keller F (1992) Automated mapping of mountain permafrost using the program PERMAKART within the geographical information system ARC/INFO. Permafrost Periglac Process 3:133–138.  https://doi.org/10.1002/ppp.3430030210CrossRefGoogle Scholar
  51. Keller F, Hoelzle M (1996) PERMAKART und PERMAMAP. In: Haeberli W (ed) Simulation der Permafrostverbreitung in den Alpen mit geographischen Informationssystemen: [Arbeitsbericht im Rahmen des Nationalen Forschungsprogrammes “Klimaänderungen und Naturkatastrophen”, NFP 31]. vdf, Hochsch.-Verl. an der ETH, Zürich, pp 35–46Google Scholar
  52. King LJ, Gorbunov AP, Evin M (1992) Prospecting and mapping of mountain permafrost and associated phenomena. Permafrost Periglac Process 3:73–81.  https://doi.org/10.1002/ppp.3430030204CrossRefGoogle Scholar
  53. Kinnard C, Lewkowicz AG (2006) Frontal advance of turf-banked solifluction lobes, Kluane Range, Yukon Territory, Canada. Geomorphology 73:261–276CrossRefGoogle Scholar
  54. Kneisel C (2004) New insights into mountain permafrost occurrence and characteristics in glacier forefields at high altitude through the application of 2D resistivity imaging. Permafrost Periglac Process 15:221–227CrossRefGoogle Scholar
  55. Krainer K, Mostler W (2006) Flow velocities of active rock glaciers in the austrian Alps. Geogr Ann 88A:267–280CrossRefGoogle Scholar
  56. Krainer K, Ribis M (2012) A rock glacier inventory of the tyrolean Alps (Austria). Austrian J Earth Sci 105:32–47Google Scholar
  57. Krautblatter M (2008) Rock permafrost geophysics and its explanatory power for permafrost-induced rockfalls and rock creep: a Perspective. In: Ninth international conference on permafrost. Fairbanks, pp 999–1004Google Scholar
  58. Krautblatter M (2009) Detection and quantification or permafrost change in alpine rock walls and implications for rock instability. Dissertation, University of BonnGoogle Scholar
  59. Krummel H (2005) Seismische Quellen. In: Knödel K, Krummel H, Lange G (eds) Geophysik. Springer, Heidelberg, pp 467–526Google Scholar
  60. Lane SN, Westaway RM, Murray Hicks D (2003) Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surf Process Land 28:249–271CrossRefGoogle Scholar
  61. Leopold M, Dethier D, Völkel J, Raab T (2008a) Combining sediment analysis and seismic refraction to describe the structure, thickness and distribution of periglacial slope deposits at Niwot Ridge, Rocky Mountains Front Range, Colorado, USA. Z Geomorph NF 52(Suppl):77–94CrossRefGoogle Scholar
  62. Leopold M, Dethier D, Völkel J, Raab T, Rikert TC, Caine N (2008b) Using geophysical methods to study the shallow subsurface of a sensitive alpine environment, Niwot Ridge, Colorado Front Range, U.S.A. Arct Antarct Alp Res 40:519–530CrossRefGoogle Scholar
  63. Leopold M, Williams M, Caine N, Völkel J, Dethier D (2011) Internal structure of the Green Lake 5 rock glacier, Colorado Front Range, USA. Permafrost Periglac Process 22:107–119.  https://doi.org/10.1002/ppp.706CrossRefGoogle Scholar
  64. Leopold M, Völkel J, Huber J, Dethier D (2013) Subsurface architecture of the Boulder Creek Critical Zone Observatory from electrical resistivity tomography. Earth Surf Process Land: n/a-n/a.  https://doi.org/10.1002/esp.3420
  65. Leopold M, Völkel J, Dethier DP, Williams MW (2014) Changing mountain permafrost from the 1970s to today—comparing two examples from Niwot Ridge, Colorado Front Range, USA. Zeit fur Geo 58(Supp):137–157.  https://doi.org/10.1127/0372-8854/2013/S-00129CrossRefGoogle Scholar
  66. Lerjen M, Kääb A, Hoelzle M, Haeberli W (2003) Local distribution of discontinous mountain permafrost. A process study at Flüela Pass, Swiss Alps, pp 667–672Google Scholar
  67. Lewkowicz AG (1992) A solifluction meter for permafrost sites. Permafrost Periglac Process 3:11–18.  https://doi.org/10.1002/ppp.3430030103CrossRefGoogle Scholar
  68. Lewkowicz AG, Ednie M (2004) Probability mapping of mountain permafrost using the BTS method, Wolf Creek, Yukon Territory, Canada. Permafrost Periglac Process 15:67–80.  https://doi.org/10.1002/ppp.480CrossRefGoogle Scholar
  69. Lewkowicz AG, Etzelmüller B, Smith SL (2011) Characteristics of discontinuous permafrost based on ground temperature measurements and electrical resistivity tomography, Southern Yukon, Canada. Permafrost Periglac Process 22:320–342.  https://doi.org/10.1002/ppp.703CrossRefGoogle Scholar
  70. Lozinski W (1909) Über die mechanische Verwitterung der Sandsteine im gemäßigten Klima. Bulletin International de l’Academie de Science de Crocovie class des Sciences Mathématique et Naturalles 1:1–25Google Scholar
  71. Marcott SA, Shakun JD, Clark PU, Mix AC (2013) A reconstruction of regional and global temperature for the past 11,300 years. Science 339:1198–1201.  https://doi.org/10.1126/science.1228026CrossRefGoogle Scholar
  72. Matsuoka N (2001) Solifluction rates, processes and landforms: a global review. Earth-Sci Rev 55:107–134.  https://doi.org/10.1016/S0012-8252(01)00057-5CrossRefGoogle Scholar
  73. Matsuoka N, Ikeda A, Date T (2005) Morphometric analysis of solifluction lobes and rock glaciers in the Swiss Alps. Permafrost Periglac Process 16:99–113.  https://doi.org/10.1002/ppp.517CrossRefGoogle Scholar
  74. Neal A (2004) Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-Sci Rev 66:261–330.  https://doi.org/10.1016/j.earscirev.2004.01.004CrossRefGoogle Scholar
  75. Noetzli J, Gruber S, Kohl T, Salzmann N, Haeberli W (2007) Three-dimensional distribution and evolution of permafrost temperatures in idealized high-mountain topography. J Geophys Res 112.  https://doi.org/10.1029/2006jf000545
  76. Nogués-Bravo D, Araújo MB, Errea MP, Martínez-Rica JP (2007) Exposure of global mountain systems to climate warming during the 21st Century. Glob Environ Change 17:420–428.  https://doi.org/10.1016/j.gloenvcha.2006.11.007CrossRefGoogle Scholar
  77. Nötzli J (2011) Modeling transient three-dimensional temperature fields in mountain permafrost. Schriftenreihe Physische Geographie, 60: Glaziologie und Geomorphodynamik. Geographisches Institut der Universität Zürich, ZürichGoogle Scholar
  78. Nötzli J, Hoelzle M, Haeberli W (2003–2004) Mountain permafrost and recent Alpine rock-fall events: a GIS-based approach to determine critical factors. In: Phillips M, Springman S, Arenson LU (eds) Permafrost. Balkema, Lisse, pp 827–832Google Scholar
  79. Otto J-C, Keuschnig M, Götz J, Marbach M, Schrott L (2012) Detection of mountain permafrost by combining high resolution surface and subsurface information—an example from the Glatzbach Catchment, Austrian Alps. Geografiska Annaler: Ser A Phys Geogr 94:43–57CrossRefGoogle Scholar
  80. Phillips M, Mutter EZ, Kern-Luetschg M, Lehning M (2009) Rapid degradation of ground ice in a ventilated talus slope: Flüela Pass, Swiss Alps. Permafrost Periglac Process 20:1–14.  https://doi.org/10.1002/ppp.638CrossRefGoogle Scholar
  81. Rödder T, Kneisel C (2012) Influence of snow cover and grain size on the ground thermal regime in the discontinuous permafrost zone, Swiss Alps. Geomorphology 175–176:176–189.  https://doi.org/10.1016/j.geomorph.2012.07.008CrossRefGoogle Scholar
  82. Roer I, Nyenhuis M (2007) Rockglacier activity studies on a regional scale: comparison of geomorphological mapping and photogrammetric monitoring. Earth Surf Process Land 32:1747–1758.  https://doi.org/10.1002/esp.1496CrossRefGoogle Scholar
  83. Roer I, Kääb A, Dikau R (2005) Rockglacier kinematics derived from small-scale aerial photography and digital airborne pushbroom imagery. Zeitschrift für Geomorphologie, NF 49:73–87Google Scholar
  84. Roer I, Kääb A, Kaufmann V, Delaloye R, Avian M, Lambiel C, Haeberli W (2008) Observations and considerations on destabilizing active rock glaciers in the European Alps. In: Ninth international conference on permafrost. Fairbanks, pp 1505–1510Google Scholar
  85. Ruiz L, Trombotto D (2012) Mountain permafrost distribution in the Andes of Chubut (Argentina). In: Proceedings, Tenth International Conference on Permafrost (TICOP), Salekhard, Russia, pp 365–370Google Scholar
  86. Scambos TA, Dutkiewicz MJ, Wilson JC, Bindschadler RA (1992) Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sens Environ 42:177–186.  https://doi.org/10.1016/0034-4257(92)90101-OCrossRefGoogle Scholar
  87. Thompson WF (1962) Preliminary notes on the nature and distribution of rock glaciers relative to true glaciers and other effects of the climate on the ground in North America. In: International Association of Scientific Hydrology (ed) International Association of Scientific Hydrology Publication 58: Symposium at Obergurgl, Austria Ward W., pp 212–219Google Scholar
  88. Verleysdonk S, Krautblatter M, Dikau R (2011) Sensitivity and path dependence of mountain permafrost systems. Geografiska Annaler: Ser A Phys Geogr 93:113–135.  https://doi.org/10.1111/j.1468-0459.2011.00423.xCrossRefGoogle Scholar
  89. Vonder Mühll D, Haeberli W (1990) Thermal characteristics of the permafrost within an active rockglacier (Murtèl/Corvatsch, Grisons, Swiss Alps). J Glaciol 36:151–158CrossRefGoogle Scholar
  90. Wahrhaftig C, Cox A (1959) Rock glaciers in the Alaska Range. Geol Soc Am Bull 70:383CrossRefGoogle Scholar
  91. Waller RI, Murton JB, Kristensen L (2012) Glacier–permafrost interactions: processes, products and glaciological implications. Sediment Geol 255–256:1–28.  https://doi.org/10.1016/j.sedgeo.2012.02.005CrossRefGoogle Scholar
  92. Walsh SJ, Bian L, McKnight S, Brown DG, Hammer ES (2003) Solifluction steps and risers, Lee Ridge, Glacier National Park, Montana, USA: a scale and pattern analysis. Geomorphology 55:381–398.  https://doi.org/10.1016/S0169-555X(03)00151-XCrossRefGoogle Scholar
  93. Washburn AL (1967) Instrumental observations of mass-wasting in the Mesters Vig district, Northeast Greenland. Medd Groenl 166:1–318Google Scholar
  94. Wheaton JM, Brasington J, Darby SE, Sear DA (2010) Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surf Process Land 35:136–156.  https://doi.org/10.1002/esp.1886CrossRefGoogle Scholar
  95. World Glacier Monitoring Service (2015) Fluctuations of glaciers databaseGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jana-Marie Dusik
    • 1
  • Matthias Leopold
    • 3
  • Florian Haas
    • 2
  1. 1.Bavarian State Agency for Environment (LfU)Geological SurveyHof/SaaleGermany
  2. 2.Physical GeographyCatholic University of Eichstätt-IngolstadtEichstättGermany
  3. 3.School of Agriculture and EnvironmentThe University of Western AustraliaCrawleyAustralia

Personalised recommendations