(Ground) Ice in the Proglacial Zone

  • Isabelle Gärtner-RoerEmail author
  • Alexander Bast
Part of the Geography of the Physical Environment book series (GEOPHY)


In mid-latitude mountains, most of the valley glaciers currently experience distinct and enhanced volume and area loss. In parallel with the glacier retreat, the related proglacial areas enlarge, leaving unconsolidated sediments and ground ice of different origins and thus forming a transitional landscape, as developing from a glacial to a non-glacial environment. The erosion, transport and accumulation of sediment in these proglacial areas are characterized by high spatio-temporal dynamics, which are typically highest in the direct glacier forefield and become more inactive with increasing distance to the glacier front. Glacial, periglacial, fluvial and gravitational processes occur and highly interact in space and time. The glacial history of recently deglaciated zones influences the complex thermal regime of the subsurface and determines the current ground ice occurrence. Besides the glacio-fluvial processes, low-temperature conditions, as well as the occurrence of ground ice, are the most effective drivers for geomorphic dynamics and related landform evolution in these proglacial areas. A deeper knowledge of ongoing processes as well as of the amounts of sediment and ground ice is decisive to assess the availability of unconsolidated sediment for potential hazardous processes (e.g. debris flows) and the availability of water from ground ice bodies. There is an increasing need for high-resolution data (e.g. repeated topographic data) of proglacial areas as well as the systematic monitoring of these environments.


Ground ice Dead ice Permafrost Rockglaciers Geophysical measurements 


  1. Ackert RPJ (1998) A rock glacier/debris-covered glacier system at Galena Creek, Absaroka Mountains, Wyoming. Geogr Ann A 80:267–276CrossRefGoogle Scholar
  2. Arenson L, Hoelzle M, Springman S (2002) Borehole deformation measurements and internal structure of some rock glaciers in Switzerland. Permafrost Periglac Process 13:117–135CrossRefGoogle Scholar
  3. Arenson LU, Colgan W, Marshall HP (2014) Physical, thermal, and mechanical properties of snow, ice and permafrost. In: Haeberli W, Whiteman C (eds) Snow and ice-related hazards, risks, and disasters. Elsevier, Amsterdam, pp 35–75Google Scholar
  4. Ballantyne CK (2002) Paraglacial Geomorphology. Quatern Sci Rev 21:1935–2017CrossRefGoogle Scholar
  5. Bast A (2009) Kleinräumige Permafrostverbreitung in einem alpinen Gletschervorfeld, Val Muragl/Oberengadin, Schweiz. Diplomarbeit Thesis, Universität Würzburg, 271 ppGoogle Scholar
  6. Bast A, Kneisel C (2011) The surface in the subsurface?—Towards small-scale permafrost distribution and quasi-3D resistivity imaging. Geophys Res Abstr 13Google Scholar
  7. Baumhauer R, Winkler S (2014): Glazialgeomorphologie: Formung der Landoberfläche durch Gletscher. BorntraegerGoogle Scholar
  8. Bearth P (1980) Erläuterungen zu Atlasblatt 71 (1308 St. Niklaus) des „Geologischen Atlas der Schweiz 1:25.000“. Schweizerische Geologische Kommission. ZürichGoogle Scholar
  9. Benn DI, Evans DJA (2010) Glaciers and glaciation. Hodder Arnold Publication, 802 ppGoogle Scholar
  10. Berthling IT (2011) Beyond confusion: rock glaciers as cryo-conditioned landforms. Geomorphology 131(3–4)CrossRefGoogle Scholar
  11. Bosson JB, Lambiel C (2016) Internal structure and current evolution of very small debris-covered glacier systems located in alpine permafrost environments. Frontiers Earth Sci 4(39)Google Scholar
  12. Bosson JB, Deline P, Bodin X, Schoeneich P, Baron L, Gardent M, Lambiel C (2015) The influence of ground ice distribution on geomorphic dynamics since the Little Ice Age in proglacial areas of two cirque glacier systems. Earth Surf Proc Land 40:666–680CrossRefGoogle Scholar
  13. Carrivick JL, Smith MW, Carrivick DM (2015) Terrestrial laser scanning to deliver high-resolution topography of the upper Tarfala valley, Arctic Sweden. GFF 137:4. Scholar
  14. Chiarle M, Iannotti S, Mortara G, Deline P (2007) Recent debris flow occurrences associated with glaciers in the Alps. Glob Planet Change 56:123–136CrossRefGoogle Scholar
  15. Church M, Ryder JM (1972) Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. GSA Bull 83(10):3059–3072CrossRefGoogle Scholar
  16. Cossart E, Mercier D, Decaulne A, Feuillet T (2013) An overview of the consequences of paraglacial landsliding on deglaciated mountain slopes: typology, timing and contribution to cascading fluxes. Quaternaire 24(1):13–24CrossRefGoogle Scholar
  17. Cuffey K, Paterson WSB (2010) The physics of glaciers. Academic Press, 704 ppGoogle Scholar
  18. Curry AM, Cleasby V, Zukowskyj P (2006) Paraglacial response of steep, sediment-mantled slopes to post-‘Little Ice Age’ glacier recession in the central Swiss Alps. J Quat Sci 21(3):211–225CrossRefGoogle Scholar
  19. Deline P, Gruber S, Delaloye R, Fischer L, Geertsema M, Giardino M, Hasler A, Kirkbride M, Krautblatter M, Magnin F, McColl S, Ravanel L, Schoeneich P (2014) Ice loss and slope stability in high-mountain regions. In: Haeberli W, Whiteman C (eds) Snow and ice-related hazards, risks, and disasters. Elsevier, Amsterdam, pp 35–75Google Scholar
  20. Dusik J-M, Leopold M, Heckmann T, Haas F, Hilger L, Morche D, Neugrig F, Brecht B (2015) Influence of glacier advance on the development of the multipart Riffeltal rock glacier, Central Austrian Alps. Earth Surf Proc Land 40(7):965–980CrossRefGoogle Scholar
  21. Eichel J, Krautblatter M, Schmidtlein S, Dikau R (2013) Biogeomorphic interactions in the Turtmann glacier forefield, Switzerland. Geomorphology 201:98–110CrossRefGoogle Scholar
  22. French HM (2013) The periglacial environment. WileyGoogle Scholar
  23. Grove JM (2004) Little ice ages: ancient and modern. Vol. I + II, 2nd edn. Routledge, London and New YorkGoogle Scholar
  24. Haeberli W (1973) Die Basis-Temperatur der winterlichen Schneedecke als möglicher Indikator für die Verbreitung von Permafrost. Z Gletscherk Glazialgeol 9:221–227Google Scholar
  25. Haeberli W (1983) Permafrost–glacier relationships in the Swiss Alps—today and in the past. In: Proceedings of the fourth international conference on permafrost. National Academy Press, Washington, DC, Fairbanks, pp 415–420Google Scholar
  26. Haeberli W (2005) Investigating glacier-permafrost relationships in high-mountain areas: historical background, selected examples and research needs. Glaciers and Permafrost, In Cryospheric SystemsGoogle Scholar
  27. Haeberli W, Schaub Y, Huggel C (2016) Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciated mountain rangesGoogle Scholar
  28. Harris SA, Pedersen DE (1998) Thermal regimes beneath coarse blocky materials. Permafrost Periglac Process 9:107–120CrossRefGoogle Scholar
  29. Huss M, Zemp M, Joerg PC, Salzmann N (2014) High uncertainty in 21st century runoff projections from glacierized basins. J Hydrol 510:35–48CrossRefGoogle Scholar
  30. Joerg PC, Morsdorf F, Zemp M (2012) Uncertainty assessment of multi-temporal airborne laser scanning data: A case study on an Alpine glacier. Remote Sens Environ 127:118–129CrossRefGoogle Scholar
  31. Juliussen H, Humlum O (2008) Thermal regime of openwork block fields on the mountains Elgåhogna and Sølen, Central-Eastern Norway. Permafrost Periglac Process 19:1–18CrossRefGoogle Scholar
  32. Kääb A, Kneisel C (2006) Permafrost creep within a recently deglaciated glacier forefield: Muragl, Swiss Alps. Permafrost Periglac Process 17:79–85CrossRefGoogle Scholar
  33. Kneisel C (1999) Permafrost in Gletschervorfeldern. Eine vergleichende Untersuchung in den Ostschweizer Alpen und Nordschweden. Universität Trier: Trierer Geographische Studien 22Google Scholar
  34. Kneisel C (2010) The nature and dynamics of frozen ground in alpine and subarctic periglacial environments. Holocene 20:423–445CrossRefGoogle Scholar
  35. Kneisel C, Kääb A (2007) Mountain permafrost dynamics within a recently exposed glacier forefield inferred by a combined geomorphological, geophysical and photogrammetrical approach. Earth Surf Proc Land 32:1797–1810CrossRefGoogle Scholar
  36. Kneisel C, Bast A, Schwindt D (2009) Quasi-3-D resistivity imaging—mapping of heterogeneous frozen ground conditions using electrical resistivity tomography. Cryosphere Discuss 3:895–918CrossRefGoogle Scholar
  37. Labhart TP (1998) Geologie der Schweiz. Thun, 211 ppGoogle Scholar
  38. Lane SN, Bakker M, Gabbud C, Micheletti N, Saugy J-N (2017) Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession. Geomorphology 277:210–227CrossRefGoogle Scholar
  39. Lilleøren KS, Etzelmüller B, Gärtner-Roer I, Kääb A, Westermann S, Gudmundsson A (2013) The distribution, thermal characteristics and dynamics of permafrost in Tröllaskagi, Northern Iceland, as inferred from the distribution of rock glaciers and ice-cored moraines. Permafrost Periglac Process 24:322–335CrossRefGoogle Scholar
  40. Loke MH (2015) Tutorial: 2-D and 3-D electrical imaging surveys.
  41. Loke MH, Barker RD (1995) Least-squares deconvolution of apparent resistivity pseudosections. Geophysics 60:1682–1690CrossRefGoogle Scholar
  42. Loke MH, Barker RD (1996) Practical techniques for 3D resistivity surveys and data inversion. Geophys Prospect 44:499–523CrossRefGoogle Scholar
  43. Lukas S (2011) Ice-cored moraines. In: Singh VP, Singh P, Haritashya UK (eds) Encyclopedia of snow, ice and glaciers. Encyclopedia of earth science series, part 3, pp 616–619. Scholar
  44. Maisch M, Wipf A, Denneler B, Battaglia J, Benz C (2000) Die Gletscher der Schweizer Alpen. Gletscherhochstand 1850, Aktuelle Vergletscherung, Gletscherschwundszenarien (2 edn). Zürich: vdf Hochschulverlag AG an der ETH ZürichGoogle Scholar
  45. Maisch M, Haeberli W, Frauenfelder R, Kääb A (2003) Lateglacial and holocene evolution of glaciers and permafrost in the Val Muragl, Upper Engadin, Swiss Alps. In: Phillips M, Springman SM, Arenson L (eds) Proceedings of the eighth international conference on permafrost. Balkema, Zurich, pp 717–722Google Scholar
  46. Maurer H, Hauck C (2007) Geophysical imaging of alpine rock glaciers. J Glaciol 53:110–120CrossRefGoogle Scholar
  47. Østrem G (1959) Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. Geogr Ann 51:228–230Google Scholar
  48. Ott E, Frehner M, Frey H-U, Lüscher P (1997) Gebirgsnadelwäler. Paul Haupt Verlag, Bern, Stuttgart, Wien, Ein praxisorientierter Leitfaden für eine standortgerechte WaldbehandlungGoogle Scholar
  49. Otto JC, Dikau R (2004) Geomorphologic system analysis of a high mountain valley in the Swiss Alps. Zeitschrift für Gemorphologie, N.F. 48(3):323–341Google Scholar
  50. Pellicciotti F, Carenzo M, Bordoy R, Stoffel M (2014) Changes in glaciers in the Swiss Alps and impact on basin hydrology: current state of the art and future research. Sci Total Environ 493:1152–1170CrossRefGoogle Scholar
  51. PERMOS (2013) Permafrost in Switzerland 2008/2009 and 2009/2010Google Scholar
  52. Rastner P, Joerg P-C, Huss M, Zemp M (2016) Historical analysis and visualization of the retreat of Findelengletscher, Switzerland, 1859–2010. Global Planet Change 145:67–77CrossRefGoogle Scholar
  53. Reynard E, Lambiel C, Delaloye R, Devaud G, Baron L, Chapellier D, Marescot L, Monnet R (2003) Glacier/permafrost relationships in forefields of small glaciers (Swiss Alps). In: Phillips M, Springman SM, Arenson LU (eds) 8th international conference on Permafrost, vol 1, Zurich. A.A. Balkema, Lisse, pp 947–952Google Scholar
  54. Rödder T, Kneisel C (2012) Influence of snow cover and grain size on the ground thermal regime in the discontinuous permafrost zone, Swiss Alps. Geomorphology 175–176:176–189CrossRefGoogle Scholar
  55. Ruff A (2015) Temporal and spatial quantification of geomorphological processes in the recently deglaciated area surrounding the Findelengletscher. Master thesis, Department of Geography, University of Zurich, 78 ppGoogle Scholar
  56. Schomacker A (2008) What controls dead-ice melting under different climate conditions) a discussion. Earth Sci Rev 90:103–113CrossRefGoogle Scholar
  57. Springman SM, Arenson L, Yamamoto Y, Maurer H, Kos A, Buchli T, Derungs G (2012) Multidisciplinary investigations on three rock glaciers in the Swiss Alps: legacies and future perspecitves. Geogr Ann Ser A Phys Geogr 94:215–243CrossRefGoogle Scholar
  58. Swift DA, Cook S, Heckmann T, Moore J, Gärtner-Roer I, Korup O (2014) Ice and snow as land-forming agents. In: Haeberli W, Whiteman C (eds) Snow and ice-related hazards, risks, and disasters. Elsevier, Amsterdam, pp 167–199Google Scholar
  59. Vaughan DG et al (2013) Observations: cryosphere. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013, Chapter 4.
  60. VAW (2015) The Swiss Glaciers 2009/2010 and 2010/2011. In: Bauder A (ed) Glaciological Report No. 131/132. Publication of the Cryospheric Commission (EKK) of the Swiss Academy of Sciences (SCNAT), 113 ppGoogle Scholar
  61. WGMS (2015) Global glacier change bulletin no. 1 (2012–2013). In: Zemp M, Gärtner-Roer I, Nussbaumer SU, Hüsler F, Machguth H, Mölg N, Paul F, Hoelzle M (eds) ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland, 230 ppGoogle Scholar
  62. Zemp M, Haeberli W, Hoelzle M, Paul F (2006) Alpine glaciers to disappear within decades? Geophys Res Lett 33:L13504CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of GeographyUniversity of ZurichZurichSwitzerland
  2. 2.Swiss Federal Research Institute WSLBirmensdorfSwitzerland

Personalised recommendations