Advertisement

Closing the Balances of Ice, Water and Sediment Fluxes Through the Terminus of Gepatschferner

  • Martin Stocker-WaldhuberEmail author
  • Michael Kuhn
Chapter
Part of the Geography of the Physical Environment book series (GEOPHY)

Abstract

The terminus of Gepatschferner (46°52′ N, 10°46′ E) was subject to detailed glaciological investigations in the joint project PROSA. Both direct and geodetic methods were applied. Specifically, ice surface lowering measured at ablation stakes determined mass loss at the glacier surface, ice surface velocity was measured directly at the same stakes with differential GPS, and geodetic radar and vibroseismic soundings came into operation to investigate ice thickness and thickness of subglacial sediments. Multiple high-resolution airborne laser scanning (ALS) surveys document total volume changes. In contrast to a differentiated examination of the balances of ice water and sediments, the combination of these balances was an appropriate approach for investigating glacier mass exchanges and identifying dominant processes within the glacial system. The calculation or estimate of the fluxes of ice, water and sediments entering the narrow terminus at an elevation of 2875 m and leaving it at the glacier snout at 2200 m was based on glacier motion, surface and basal melt rates and on the lateral mass transport to the glacier from rock face and moraine bedrock erosion recorded from repeated terrestrial laser scans. In the course of the investigations on Gepatschferner, multiple rockfall events and the rapid evacuation of subglacial sediments were observed. The highest mass fluxes within the glacial system of Gepatschferner were associated with these extreme or episodic events, which exceeded the normal annual processes by multiple orders of magnitude. The relevant geophysical processes in this study period were thus not representative of long-term averages, if these ever existed. They did, however, display an interesting spectrum of naturally occurring situations. In that period, the mean velocity through the cross section at 2875 m was 22.5 m per year. Below that profile, the ice loss at the terminus corresponds to a mean surface lowering of 3.61 m per year between 2012 and 2015.

Keywords

PROSA project Glacier mass balance Surface velocity Subglacial sediment Sediment flux 

List of variables and indices

Variables

a

Ablation

A

Area

B

Glacier width

C

Cross section

E

Evaporation

h

Elevation

H

Thickness

M

Mass flux

P

Precipitation

Q

Volume flux

R

Run-off

S

Storage

t

Time

u

Velocity

V

Volume

ρ

Density

Indices

b

Basal

bed

Bedload

d

Deformation

i

Ice

lat

Lateral

r

Bedrock

s

Surface

sed

Sediment

sus

Suspension

top

From the area above 2875 m to the terminus

w

Water

Notes

Acknowledgements

The glaciological investigations on Gepatschferner are part of the joint project PROSA, funded by the German Research Foundation (DFG) (SCHM 472/17-1, SCHM 472/17-2 and BE 1118/33-3) and the Austrian Science Fund (FWF) (I 894-N24 and I 1646-N19). Numerous people were involved in the fieldwork to whom we are deeply grateful for their valuable contribution. Thanks to J. Carrivick for his review on the manuscript which helped us to improve this chapter. We thank B. Scott for editing the English.

References

  1. Abermann J, Fischer A, Lambrecht A, Geist T (2010) On the potential of very high-resolution repeat DEMs in glacial and periglacial environments. Cryosphere 4:53CrossRefGoogle Scholar
  2. Baewert H, Morche D (2014) Coarse sediment dynamics in a proglacial fluvial system (Fagge River, Tyrol). Geomorphology 218:88–97.  https://doi.org/10.1016/j.geomorph.2013.10.021CrossRefGoogle Scholar
  3. Bollmann E, Sailer R, Briese C, Stötter H (2011) Potential of airborne laser scanning for geomorphologic feature and process detection and quantifications in high alpine mountains. Z Geomorphol, Supplementary Issues 55:83–104CrossRefGoogle Scholar
  4. Carrivick JL, Berry K, Geilhausen M, James WHM, Williams C, Brown LE, Rippin DM, Carver SJ (2015) Decadal-scale changes of the Ödenwinkelkees, Central Austria, suggest increasing control of topography and evolution towards steady state. Geogr Ann: Ser A, Phys Geogr 97:543–562.  https://doi.org/10.1111/geoa.12100CrossRefGoogle Scholar
  5. Carrivick JL, Geilhausen M, Warburton J, Dickson NE, Carver SJ, Evans AJ, Brown LE (2013) Contemporary geomorphological activity throughout the proglacial area of an alpine catchment. Geomorphology 188:83–95.  https://doi.org/10.1016/j.geomorph.2012.03.029CrossRefGoogle Scholar
  6. Cuffey K, Paterson WSB (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann/Elsevier, Burlington, MAGoogle Scholar
  7. Eisen O, Hofstede C, Miller H, Kristoffersen Y, Blenkner R, Lambrecht A, Mayer C (2010) A new approach for exploring ice sheets and sub-ice geology. Eos, Trans Am Geophys Union 91:429–430.  https://doi.org/10.1029/2010EO460001CrossRefGoogle Scholar
  8. Fischer A (2016) Gletscherbericht 2014/2015-Sammelbericht über die Gletschermessungen des Österreichischen Alpenvereins im Jahre 2015. Bergauf 02(2016):6–13Google Scholar
  9. Fischer A, Markl G, Kuhn M (2013) Glacier mass balances and elevation zones of Hintereisferner, Ötztal Alps, Austria, 1952/1953 to 2010/2011Google Scholar
  10. Fischer A, Seiser B, Stocker-Waldhuber M, Mitterer C, Abermann J (2015) Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria. Cryosphere 9:753–766.  https://doi.org/10.5194/tc-9-753-2015CrossRefGoogle Scholar
  11. Förtsch O, Schneider H, Vidal H (1955) Seismische Messungen auf dem Gepatsch-und Kesselwand-Ferner in den Ötztaler Alpen. Gerlands Beitr Geophys 64:233–261Google Scholar
  12. Fritzsch M (1898) Verzeichnis der bis zum Sommer 1896 in den Ostalpen gesetzten Gletschermarken. Verlag des Dtsch Österr Alpenvereins, Wien, p 131Google Scholar
  13. Giese P (1963) Some results of seismic refraction work at the Gepatsch glacier in the Oetztal Alps. IAHS Publ 61:154–161Google Scholar
  14. Groß G (1987) Der Flächenverlust der Gletscher in Österreich 1850–1920–1969. Z Gletscherk Glazialgeol 23(2):131–141Google Scholar
  15. Gurnell AM, Clark MJ (1987) Glacio-fluvial sediment transfer—an Alpine perspective. Wiley, West SussexGoogle Scholar
  16. Hallet B, Hunter L, Bogen J (1996) Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Global Planet Change 12:213–235.  https://doi.org/10.1016/0921-8181(95)00021-6CrossRefGoogle Scholar
  17. Hartl L (2010) The Gepatschferner from 1850 to 2006-changes in length, area and volume in relation to climate. Unpubl. Diploma thesis, Innsbruck University, p 82Google Scholar
  18. Hauck C, Kneisel C (2008) Applied geophysics in periglacial environments. Cambridge University Press CambridgeGoogle Scholar
  19. Heckmann T, Haas F, Morche D, Schmidt KH, Rohn J, Moser M, Leopold M, Kuhn M, Briese C, Pfeiffer N, Becht M (2012) Investigating an Alpine proglacial sediment budget using field measurements, airborne and terrestrial LiDAR data. IAHS-AISH publication, pp 438–447Google Scholar
  20. Helfricht K, Schöber J, Seiser B, Fischer A, Stötter J, Kuhn M (2012) Snow accumulation of a high alpine catchment derived from LiDAR measurements. Adv Geosci 32:31CrossRefGoogle Scholar
  21. Hofer B (1987) Der Feststofftransport von Hochgebirgsbächen am Beispiel des Pitzbaches. Österr Wasserwirtsch 39:30–38Google Scholar
  22. Hoinkes H (1970) Methoden und Möglichkeiten von Massenhaushaltsstudien auf Gletschern: Ergebnisse der Messreihe Hintereisferner (Ötztaler Alpen) 1953–1968. Z Gletscherk Glazialgeol 6:37–90Google Scholar
  23. Hubbard B, Glasser NF (2005) Field techniques in glaciology and glacial geomorphology. Wiley, Chichester, West Sussex, England ; Hoboken, NJGoogle Scholar
  24. Jansson P, Hock R, Schneider T (2003) The concept of glacier storage: a review. J Hydrol 282:116–129CrossRefGoogle Scholar
  25. Kuhn M (2000) Verification of a hydrometeorological model of glacierized basins. Ann Glaciol 31:15–18CrossRefGoogle Scholar
  26. Kuhn M (2003) Redistribution of snow and glacier mass balance from a hydrometeorological model. J Hydrol 282:95–103CrossRefGoogle Scholar
  27. Kuhn M, Batlogg N (1998) Glacier runoff in Alpine headwaters in a changing climate. International Association of Hydrological Sciences, Publication, pp 79–88Google Scholar
  28. Kuhn M, Batlogg N (1999) Modellierung der Auswirkung von Klimaänderung auf verschiedene Einzugsgebiete in Österreich. Schriftenreihe Forschung im Verbund, Wien; p 98Google Scholar
  29. Kuhn M, Dreiseitl E, Hofinger S, Markl G, Span N, Kaser G (1999) Measurements and models of the mass balance of Hintereisferner. Geogr Ann: Ser A, Phys Geography 81:659–670CrossRefGoogle Scholar
  30. Kuhn M, Helfricht K, Ortner M, Landmann J (2016) Liquid water storage in snow and ice in 86 Eastern Alpine basins and its changes from 1970–97 to 1998–2006. Ann Glaciol 57:11–18CrossRefGoogle Scholar
  31. Kuhn M, Lambrecht A, Abermann J, Patzelt G, Groß G (2012) The Austrian Glaciers 1998 and 1969, area and volume changes. Z Gletscherk Glazialgeol 43(44):3–107Google Scholar
  32. Kuhn M, Olefs M, Fischer A (2007) Auswirkungen von Klimaänderungen auf das Abflussverhalten von vergletscherten Einzugsgebieten im Hinblick auf die Speicherkraftwerke. Project report: StartClim2007.E, p 49Google Scholar
  33. Lambrecht A, Kuhn M (2007) Glacier changes in the Austrian Alps during the last three decades, derived from the new Austrian glacier inventory. Ann Glaciol 46:177–184CrossRefGoogle Scholar
  34. Monteiro LS, Moore T, Hill C (2005) What is the accuracy of DGPS? J Navig 58:207–225CrossRefGoogle Scholar
  35. Patzelt G (1980) The Austrian glacier inventory: status and first results. IAHS Publication 126, (Riederalp Workshop 1978—World Glacier Inventory), pp 181–183Google Scholar
  36. Span N, Fischer A, Kuhn M, Massimo M, Butschek M (2005) Radarmessungen der Eisdicke österreichischer Gletscher [1]: Messungen 1995 bis 1998. Österreichische Beiträge zur Meteorologie und Geophysik 33, p 145Google Scholar
  37. Span N, Kuhn M (2003) Simulating annual glacier flow with a linear reservoir model. J Geophys Res: Atmos 108Google Scholar
  38. Span N, Kuhn M, Schneider H (1997) 100 years of ice dynamics of Hintereisferner, Central Alps, Austria, 1894–1994. Ann Glaciol 24:297–302CrossRefGoogle Scholar
  39. Stocker-Waldhuber M, Fischer A, Keller L et al (2017) Funnel-shaped surface depressions—indicator or accelerant of rapid glacier disintegration? A case study in the Tyrolean Alps. Geomorphology 287:58–72.  https://doi.org/10.1016/j.geomorph.2016.11.006CrossRefGoogle Scholar
  40. Thibert E, Blanc R, Vincent C, Eckert N (2008) Instruments and methods glaciological and volumetric mass-balance measurements: error analysis over 51 years for Glacier de Sarennes, French Alps. J Glaciol 54:522–532CrossRefGoogle Scholar
  41. Van der Veen CJ (2013) Fundamentals of glacier dynamics. CRC PressGoogle Scholar
  42. Warburton J (1990) Comparison of bed load yield estimates for a glacial meltwater stream. Proc Int Conf Water Resour Mountainous Reg, IAHS Publ 193:315–322Google Scholar
  43. WGMS (World Glacier Monitoring Service) (2012) Fluctuations of glaciers 2005–2010, vol 10. World Glacier Monitoring Service, University of Zürich, http://www.wgms.ch/

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Interdisciplinary Mountain Research, Austrian Academy of SciencesInnsbruckAustria
  2. 2.Department of Geography, Physical GeographyCatholic University of Eichstätt-IngolstadtEichstätt-IngolstadtGermany
  3. 3.Institute of Atmospheric and Cryospheric Sciences, University of InnsbruckInnsbruckAustria

Personalised recommendations