Glacier Changes Since the Little Ice Age

  • Frank PaulEmail author
  • Tobias Bolch
Part of the Geography of the Physical Environment book series (GEOPHY)


The majority of glaciers are currently retreating globally but had been in an advanced position for several hundred years during the so-called Little Ice Age (LIA). During this period, the lateral accumulation of rock and debris created impressive moraine walls. Between these LIA moraines and the actual terminus position is the glacier forefield, which is growing as glaciers retreat. Whereas the forefields are constantly changing (e.g. due to the transport of sediment and rock, lake formation and growth, plant colonization), the outer boundary marked by the moraines changed little and has widely been used to reconstruct maximum LIA extents and volume for numerous glaciers around the world. Together with field and satellite measurements, a detailed time series of glacier fluctuations since the LIA has been obtained for hundreds of glaciers that indicate some regional and glacier-specific variability, but also robust global trends of shrinkage and volume loss. Overall, the kilometre-scale retreat and upward shift of glacier termini by several 100 m since the end of the LIA confirm a global temperature increase by about one degree. As most glaciers have not yet adjusted their geometry to current climatic conditions, they will further shrink while forefields will continue to grow.


Climate change Little Ice Age Glacier fluctuations Glacier mass balance Glacier inventory 



This study has been funded by the ESA project Glaciers_cci (4000109873/14/I-NB). We would like to thank an anonymous reviewer and S. Nussbaumer for their helpful comments to improve this contribution.


  1. Andreassen LM, Elvehøy H, Kjøllmoen B, Engeset RV, Haakensen N (2005) Glacier mass balance and length variations in Norway. Ann Glaciol 42:317–325CrossRefGoogle Scholar
  2. Bahr DB, Dyurgerov M, Meier MF (2009) Sea-level rise from glaciers and ice caps: A lower bound. Geophys Res Lett 36(3):L03501. Scholar
  3. Barandun M, Huss M, Sold L, Farinotti D, Asisov E, Salzmann N, Usubaliev R, Merkushkin A, Hoelzle M (2015) Re-analysis of seasonal mass balance at Abramov glacier 1968–2014. J Glaciol 61(230):1103–1117CrossRefGoogle Scholar
  4. Baroni C, Orombelli G (1996) The Alpine “iceman” and holocene climatic change. Quat Res 46(1):78–83CrossRefGoogle Scholar
  5. Baumann S, Winkler S, Andreassen LM (2009) Mapping glaciers in Jotunheimen, South-Norway, during the “Little Ice Age” maximum. Cryosphere 3(2):231–243CrossRefGoogle Scholar
  6. Beniston M (2006) Mountain weather and climate: a general overview and a focus on climatic change in the Alps. Hydrobiologia 562:3–16CrossRefGoogle Scholar
  7. Benn DI, Lehmkuhl F (2000) Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quatern Int 65/66:15–29CrossRefGoogle Scholar
  8. Bhambri R, Bolch T, Chaujar RK (2012) Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2006, measured through high resolution remote sensing data. Curr Sci India 102(3):489–494Google Scholar
  9. Böhm A, Auer I, Brunetti M, Maugueri M, Nanni T, Schöner W (2001) Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int J Climatol 21(14):1779–1801CrossRefGoogle Scholar
  10. Bolch T, Chrsitiansen H (2014) Large scale settings: the physiography of the cryosphere. In: Haeberli W, Whiteman C (eds) Snow and ice-related hazards, risks and disasters. Elsevier, New York, pp 201–217Google Scholar
  11. Bolch T, Kamp U (2006) Glacier mapping in high mountains using DEMs, landsat and ASTER data. Grazer Schriften der Geographie und Raumforschung 41. In: Proceedings of the 8th Int. Symp. on High Mountain Remote Sensing Cartography, 20–27 March 2005, La Paz, Bolivia, pp. 13–24Google Scholar
  12. Bolch T, Buchroithner MF, Peters J, Baessler M, Bajracharya SR (2008) Identification of glacier motion and potentially dangerous glacier lakes at Mt. Everest area/Nepal using spaceborne imagery. Nat Hazards Earth. Syst Sci 8(6):1329–1340Google Scholar
  13. Bolch T, Menounos B, Wheate RD (2010a) Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens Environ 114(1):127–137CrossRefGoogle Scholar
  14. Bolch T, Yao T, Kang S, Buchroithner MF, Scherer D, Maussion F, Huintjes E, Schneider C (2010b) A glacier inventory for the western Nyainqentanglha Range and Nam Co Basin, Tibet, and glacier changes 1976–2009. Cryosphere 4:419–433CrossRefGoogle Scholar
  15. Bolch T, Peters J, Pradhan B, Yegorov AB, Buchroithner MF, Blagoveshchenskiy VP (2011) Identification of potentially dangerous glacial lakes in the northern Tien Shan. Nat Hazards 59(3):1691–1714CrossRefGoogle Scholar
  16. Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012) The state and fate of Himalayan glaciers. Science 336(6079):310–314CrossRefGoogle Scholar
  17. Braithwaite RJ, Raper S (2009) Estimating equilibrium-line altitude (ELA) from glacier inventory data. Ann Glaciol 50(53):127–132CrossRefGoogle Scholar
  18. Brynjólfsson S, Schomacker A, Guðmundsdóttir ER, Ingólfsson Ó (2015) A 300-year surge history of the Drangajökull ice cap, northwest Iceland, and its maximum during the ‘Little Ice Age’. Holocene 25(7):1076–1092CrossRefGoogle Scholar
  19. Burga C (1999) Vegetation development on the glacier forefield Morteratsch (Switzerland). Appl Veg Sci 2:17–24CrossRefGoogle Scholar
  20. Carey M, Huggel C, Bury J, Portocarrero C, Haeberli W (2012) An integrated socio-environmental framework for glacier hazard management and climate change adaptation: lessons from Lake 513, Cordillera Blanca, Peru. Clim Change 112(3):733–767CrossRefGoogle Scholar
  21. Carturan L, Baroni C, Becker M, Bellin A, Cainelli O, Carton A, Casarotto C, Dalla Fontana G, Godio A, Martinelli T, Salvatore MC, Seppi R (2013a) Decay of a long-term monitored glacier: Careser Glacier (Ortles-Cevedale, European Alps). Cryosphere 7(6):1819–1838CrossRefGoogle Scholar
  22. Carturan L, Filippi R, Seppi R, Gabrielli P, Notarnicola C, Bertoldi L, Paul F, Rastner P, Cazorzi F, Dinale R, Dalla Fontana G (2013b) Area and volume loss of the glaciers in the Ortles-Cevedale group (Eastern Italian Alps): controls and imbalance of the remaining glaciers. Cryosphere 7(5):1339–1359CrossRefGoogle Scholar
  23. Carturan L, Baroni C, Carton A, Cazorzi F, Fontana GD, Delpero C, Salvatore MC, Seppi R, Zanoner T (2014) Reconstructing fluctuations of La Mare Glacier (Eastern Italian Alps) in the Late Holocene: new evidence for a Little Ice Age maximum around 1600 AD. Geogr Ann A 96(3):287–306CrossRefGoogle Scholar
  24. Chinn T, Winkler S, Salinger MJ, Haakensen N (2005) Recent glacier advances in Norway and New Zealand: a comparison of their glaciological and meteorological causes. Geogr Ann A 87(1):141–157CrossRefGoogle Scholar
  25. Cía JC, Andrés AJ, Sánchez MS, Novau JC, Moreno JL (2005) Responses to climatic changes since the Little Ice Age on Maladeta Glacier (Central Pyrenees). Geomorphology 68(3–4):167–182CrossRefGoogle Scholar
  26. Citterio M, Diolaiuti G, Smiraglia C, D’Agata C, Carnielli T, Stella G, Siletto GB (2007) The fluctuations of Italian glaciers during the last century: a contribution to the knowledge about alpine glacier changes. Geogr Ann A 89(3):167–184CrossRefGoogle Scholar
  27. Citterio M, Paul F, Ahlstrøm AP, Jepsen HF, Weidick A (2009) Remote sensing of glacier change in West Greenland: accounting for the occurrence of surge-type glaciers. Ann Glaciol 50(53):70–80CrossRefGoogle Scholar
  28. Clague JJ, Evans SG (2000) A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quat Sci Rev 19:1763–1783CrossRefGoogle Scholar
  29. Clarke GKC, Jarosch AH, Anslow FS, Radic V, Menounos B (2015) Projected deglaciation of western Canada in the twenty-first century. Nature Geosci 8(5):372–377CrossRefGoogle Scholar
  30. Davies BJ, Glasser NF (2012) Accelerating shrinkage of Patagonian glaciers from the Little Ice Age (AD 1870) to 2011. J Glaciol 58(212):1063–1084CrossRefGoogle Scholar
  31. DeVisser MH, Fountain AG (2015) A century of glacier change in the Wind River Range, WY. Geomorphology 232:103–116CrossRefGoogle Scholar
  32. Dyurgerov M, Meier MF, Bahr DB (2009) A new index of glacier area change: a tool for glacier monitoring. J Glaciol 55(192):710–716CrossRefGoogle Scholar
  33. Egli M, Wernli M, Kneisel C, Biegger S, Haeberli W (2006) Melting glaciers and soil development in the proglacial area Morteratsch (Swiss Alps): II. Modeling the present and future soil state. Arct Antarct Alp Res 38(4):510–521CrossRefGoogle Scholar
  34. Fischer A, Seiser B, Stocker Waldhuber M, Mitterer C, Abermann J (2015) Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria. Cryosphere 9:753–766CrossRefGoogle Scholar
  35. Frey H, Haeberli W, Linsbauer A, Huggel C, Paul F (2010) A multi-level strategy for anticipating future glacier lake formation and associated hazard potentials. Nat Hazards Earth Syst Sci 10:339–352CrossRefGoogle Scholar
  36. Gardelle J, Arnaud Y, Berthier E (2011) Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Global Planet Change 75:47–55CrossRefGoogle Scholar
  37. Gardent M, Rabatel A, Dedieu J, Deline P (2014) Multitemporal glacier inventory of the French Alps from the late 1960s to the late 2000s. Global Planet Change 120:24–37CrossRefGoogle Scholar
  38. Glasser NF, Harrison S, Jansson KN, Anderson K, Cowley A (2011) Global sea-level contribution from the Patagonian Icefields since the Little Ice Age maximum. Nat Geosci 4(11):303–307CrossRefGoogle Scholar
  39. Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M (2014) 21st century climate change in the European Alps—a review. Sci Total Environ 493:1138–1151.CrossRefGoogle Scholar
  40. González Trueba JJ, Moreno RM, Martínez de Pisón E, Serrano E (2008) ‘Little Ice Age’ glaciation and current glaciers in the Iberian Peninsula. Holocene 18(4):551–568CrossRefGoogle Scholar
  41. Grove JM (1988) The Little Ice Age. Methuen, London and New YorkCrossRefGoogle Scholar
  42. Grove JM (2004) Little Ice Ages: ancient and modern, 2nd edn. Routledge, LondonGoogle Scholar
  43. Haeberli W, Hoelzle M (1995) Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps. Ann Glaciol 21:206–212CrossRefGoogle Scholar
  44. Haeberli W, Schleiss A, Linsbauer A, Künzler M, Bütler M (2012) Gletscherschwund und neue Seen in den Schweizer Alpen. Wasser Energie Luft 104(2):93–102Google Scholar
  45. Haeberli W, Buetler M, Huggel C, Friedli TL, Schaub Y, Schleiss AJ (2016a) New lakes in deglaciating high-mountain regions – opportunities and risks. Clim Change 139(2):201–214CrossRefGoogle Scholar
  46. Haeberli W, Linsbauer A, Cochachin A, Salazar C, Fischer UH (2016b) On the morphological characteristics of overdeepenings in high-mountain glacier beds. Earth Surf Process Landforms 41(13):1980–1990CrossRefGoogle Scholar
  47. Haeberli W, Schaub Y, Huggel C (2017) Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology 293:405–417CrossRefGoogle Scholar
  48. Hagg W, Mayer C, Mayr E, Heilig A (2012) Climate and glacier fluctuations in the Bavarian Alps in the past 120 years. Erdkunde 66(2):121–142CrossRefGoogle Scholar
  49. Hastenrath S (2005) The glaciers of Mount Kenya 1899–2004. Erdkunde 59(2):120–125CrossRefGoogle Scholar
  50. Heckmann T, McColl S, Morche D (2016) Retreating ice: research in pro-glacial areas matters. Earth Surf Process Land 41(2):271–276CrossRefGoogle Scholar
  51. Holzhauser H, Magny M, Zumbuühl HJ (2005) Glacier and lake-level variations in west-central Europe over the last 3500 years. Holocene 15(6):789–801CrossRefGoogle Scholar
  52. Hormes A, Müller BU, Schlüchter C (2001) The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. Holocene 11(3):255–265CrossRefGoogle Scholar
  53. Huggel C, Kääb A, Haeberli W, Krummenacher B (2003) Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps. Nat Hazards Earth Syst Sci 3:647–662CrossRefGoogle Scholar
  54. Huss M, Hock R (2015) A new model for global glacier change and sea-level rise. Front Earth Sci 3:54. Scholar
  55. Huss M, Hock R, Bauder A, Funk M (2010) 100-year mass changes in the Swiss Alps linked to the Atlantic Multidecadal Oscillation. Geophys Res Lett 37(10):L10501. Scholar
  56. Huss M, Hock R, Bauder A, Funk M (2012) Conventional versus reference-surface mass balance. J Glaciol 58(208):278–286CrossRefGoogle Scholar
  57. ICIMOD (2011) Glacial lakes and glacial lake outburst floods in Nepal. KathmanduGoogle Scholar
  58. Ivy-Ochs S, Kerschner H, Maisch M, Christl M, Kubik PW, Schlüchter C (2009) Latest Pleistocene and Holocene glacier variations in the European Alps. Holocene and latest pleistocene Alpine Glacier fluctuations: a global perspective. Quat Sci Rev 28(21–22):2137–2149CrossRefGoogle Scholar
  59. Joerin UE, Stocker TF, Schlüchter C (2006) Multicentury glacier fluctuations in the Swiss Alps during the Holocene. Holocene 16(5):697–704CrossRefGoogle Scholar
  60. Joerin UE, Nicolussi K, Fischer A, Stocker TF, Schlüchter C (2008) Holocene optimum events inferred from subglacial sediments at Tschierva Glacier, Eastern Swiss Alps. Quat Sci Rev 27(3–4):337–350CrossRefGoogle Scholar
  61. Jomelli V, Favier V, Rabatel A, Brunstein D, Hoffmann G, Francou B (2009) Fluctuations of glaciers in the tropical Andes over the last millennium and palaeoclimatic implications: a review. Palaeogeogr Palaeocl 281(3–4):269–282CrossRefGoogle Scholar
  62. Jouvet G, Huss M, Blatter H, Picasso M, Rappaz J (2009) Numerical simulation of Rhonegletscher from 1874 to 2100. J Comput Phys 228(17):6426–6439CrossRefGoogle Scholar
  63. Jouvet G, Huss M, Funk M, Blatter H (2011) Modelling the retreat of Grosser Aletschgletscher, Switzerland, in a changing climate. J Glaciol 57(206):1033–1045CrossRefGoogle Scholar
  64. Kargel JS, Leonard GJ, Bishop MP, Kääb A, Raup BH (eds) (2014) Global land ice measurements from space. Springer, Berlin HeidelbergGoogle Scholar
  65. Kerschner H, Ivy-Ochs S (2008) Palaeoclimate from glaciers: examples from the Eastern Alps during the Alpine Lateglacial and early Holocene. Historical and Holocene glacier – climate variations. Global Planet Change 60(1–2):58–71CrossRefGoogle Scholar
  66. Koch J, Clague JJ, Osborn G (2007) Glacier fluctuations during the last millennium in Garibaldi Provincial Park, southern Coast Mountains, British Columbia. Can J Earth Sci 44:1215–1233CrossRefGoogle Scholar
  67. Koch J, Clague JJ, Osborn G (2014) Alpine glaciers and permanent ice and snow patches in Western Canada approach their smallest sizes since the mid-Holocene, consistent with global trends. Holocene 24(12):1639–1648CrossRefGoogle Scholar
  68. Kos A, Amann F, Strozzi T, Delaloye R, von Ruette J, Springman S (2016) Contemporary glacier retreat triggers a rapid landslide response, Great Aletsch Glacier, Switzerland. Geophys Res Lett 43:12466–12474. Scholar
  69. Kotlarski S, Jacob D, Podzun R, Paul F (2010) Representing glaciers in a Regional Climate Model. Clim Dyn 34(1):27–46CrossRefGoogle Scholar
  70. Kuhn M (1981) Climate and glaciers. IAHS Publ 131:3–20Google Scholar
  71. Kuhn M, Markl G, Kaser G, Nickus U, Obleitner F, Schneider H (1985) Fluctuations of climate and mass balance:different responses of two adjacent glaciers. Z Gletscherkd Glazialgeol 21:409–416Google Scholar
  72. Leclercq PW, Weidick A, Paul F, Bolch T, Citterio M, Oerlemans J (2012) Historical glacier length changes in West Greenland. Cryosphere 6:1339–1343CrossRefGoogle Scholar
  73. Leclercq PW, Oerlemans J, Basagic HJ, Bushueva I, Cook AJ, Le Bris R (2014) A data set of worldwide glacier length fluctuations. Cryosphere 8(2):659–672CrossRefGoogle Scholar
  74. Linsbauer A, Paul F, Haeberli W (2012) Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: application of a fast and robust approach. J Geophys Res 117:F03007. Scholar
  75. Loibl D, Lehmkuhl F, Grießinger J (2014) Reconstructing glacier retreat since the Little Ice Age in SE Tibet by glacier mapping and equilibrium line altitude calculation. Geomorphology 214:22–39CrossRefGoogle Scholar
  76. Lopez P, Chevallier P, Favier V, Pouyaud B, Ordenes F, Oerlemans J (2010) A regional view of fluctuations in glacier length in southern South America. Global Planet Change 71(1–2):85–108CrossRefGoogle Scholar
  77. Loriaux T, Casassa G (2013) Evolution of glacial lakes from the Northern Patagonian Icefield and terrestrial water storage in a sea-level rise context. Global Planet Change 102:33–40CrossRefGoogle Scholar
  78. Lucchesi S, Fioraso G, Bertotto S, Chiarle M (2014) Little Ice Age and contemporary glacier extent in the Western and South-Western Piedmont Alps (North-Western Italy). J Maps 10(3):409–423CrossRefGoogle Scholar
  79. Luckman BH (2000) The Little Ice Age in the Canadian rockies. Geomorphology 32(3):357–384CrossRefGoogle Scholar
  80. Lüthi M, Bauder A (2010) Analysis of alpine glacier length change records with a macroscopic glacier model. Geogr Helv 2:92–102CrossRefGoogle Scholar
  81. Maisch M (1992) Die Gletscher Graubündens. Rekonstruktion und Auswertung der Gletscher und deren Veränderung seit dem Hochstand von 1850 im Gebiet der östlichen Schweizer Alpen (Bündnerland und angrenzende Regionen). Teil A: Grundlagen, Analysen, Ergebnisse; Teil B: Verzeichnisse, Datenkataloge, Gletscherkarten. Physische Geographie ZurichGoogle Scholar
  82. Maisch M, Wipf A, Denneler B, Battaglia J, Benz C (2000) Die Gletscher der Schweizer Alpen - Gletscherhochstand 1850 - Aktuelle Vergletscherung - Gletscherschwundszenarien, Schlussbericht NFP 31, 2nd edn. Hochschulverlag ETH ZürichGoogle Scholar
  83. Marti R, Gascoin S, Houet T, Ribière O, Laffly D, Condom T, Monnier S, Schmutz M, Camerlynck C, Tihay JP, Soubeyroux JM, René P (2015) Evolution of Ossoue glacier (French Pyrenees) since the end of the Little Ice Age. Cryosphere 9(5):1773–1795CrossRefGoogle Scholar
  84. Marzeion B, Jarosch AH, Hofer M (2012) Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 6(6):1295–1322CrossRefGoogle Scholar
  85. Marzeion B, Champollion N, Haeberli W, Langley K, Leclercq P, Paul F (2017) Observation of glacier mass changes on the global scale and its contribution to sea level change. Surv Geophys 38(1):105–130CrossRefGoogle Scholar
  86. Masiokas MH, Luckman BH, Villalba R, Delgado S, Skvarca P, Ripalta A (2009a) Little Ice Age fluctuations of small glaciers in the Monte Fitz Roy and Lago del Desierto areas, south Patagonian Andes. Argentina. Palaeogeogr Palaeocl 281(3–4):351–362CrossRefGoogle Scholar
  87. Masiokas MH, Rivera A, Espizua LE, Villalba R, Delgado S, Aravena JC (2009b) Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeogr Palaeocl 281(3–4):242–268CrossRefGoogle Scholar
  88. Matthews JA, Briffa KR (2005) The ‘Little Ice Age’: re-evaluation of an evolving concept. Geogr Ann A 87(1):17–36CrossRefGoogle Scholar
  89. Mayewski PA, Jeschke PA (1979) Himalayan and Trans-Himalayan Glacier Fluctuations Since AD 1812. Arctic Alpine Res 11(3):267–287CrossRefGoogle Scholar
  90. Menounos B, Osborn G, Clague JJ, Luckman BH (2009) Latest Pleistocene and Holocene glacier fluctuations in western Canada. Quat Sci Rev 28(21–22):2049–2074CrossRefGoogle Scholar
  91. Narama C, Kääb A, Duishonakunov M, Abdrakhmatov K (2010) Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (1970), Landsat (2000), and ALOS (2007) satellite data. Global Planet Change 71(1–2):42–54CrossRefGoogle Scholar
  92. Nesje A, Bakke J, Dahl SO, Lie Ø, Matthews JA (2008a) Norwegian mountain glaciers in the past, present and future. Historical and Holocene glacier – climate variations. Global Planet Change 60(1–2):10–27CrossRefGoogle Scholar
  93. Nesje A, Dahl SO, Thun T, Nordli Ø (2008b) The ‘Little Ice Age’ glacial expansion in western Scandinavia: summer temperature or winter precipitation? Clim Dyn 30(7):789–801CrossRefGoogle Scholar
  94. Nussbaumer SU, Zumbühl HJ, Steiner D (2007) Fluctuations of the Mer de Glace (Mont Blanc area, France) AD 1500–2050. Part I: The history of the Mer de Glace AD 1570–2003 according to pictorial and written documents. Z Gletscherkunde Glazialgeol 40:5–140Google Scholar
  95. Nussbaumer SU, Nesje A, Zumbühl HJ (2011a) Historical glacier fluctuations of Jostedalsbreen and Folgefonna (Southern Norway) reassessed by new pictorial and written evidence. Holocene 21(3):455–471CrossRefGoogle Scholar
  96. Nussbaumer SU, Steinhilber F, Trachsel M, Breitenmoser P, Beer J, Blass A, Grosjean M, Hafner A, Holzhauser H, Wanner H, Zumbühl HJ (2011b) Alpine climate during the Holocene: a comparison between records of glaciers, lake sediments and solar activity. J Quat Sci 26(7):703–713CrossRefGoogle Scholar
  97. Oerlemans J (2001) Glaciers and climate change. Balkema LisseGoogle Scholar
  98. Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308:675–677CrossRefGoogle Scholar
  99. Oppikofer T, Jaboyedoff M, Keusen H (2008) Collapse at the eastern Eiger flank in the Swiss Alps. Nat Geosci 1(8):531–535CrossRefGoogle Scholar
  100. Paul F (2002) Changes in glacier area in Tyrol, Austria, between 1969 and 1992 derived from Landsat 5 TM and Austrian Glacier Inventory data. Int J Remote Sens 23(4):787–799CrossRefGoogle Scholar
  101. Paul F (2004) The new Swiss glacier inventory 2000 - application of remote sensing and GIS. Dissertation, Physical Geography, University of Zurich, ZurichGoogle Scholar
  102. Paul F (2010) The influence of changes in glacier extent and surface elevation on modeled mass balance. Cryosphere 4(4):569–581CrossRefGoogle Scholar
  103. Paul F (2015) Kartierung von Gletschern mit Satellitendaten und das globale Gletscherinventar. In: Lozán JL, Grassl H, Kasang D, Notz D Escher-Vetter H (Hrsg.): Warnsignal Klima: Das Eis der Erde (Kap. 4.1):103–110Google Scholar
  104. Paul F, Haeberli W (2008) Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models. Geophys Res Lett 35:L21502. Scholar
  105. Paul F, Kääb A (2005) Perspectives on the production of a glacier inventory from multispectral satellite data in Arctic Canada: Cumberland Peninsula, Baffin Island. Ann Glaciol 42:59–66CrossRefGoogle Scholar
  106. Paul F, Mölg N (2014) Hasty retreat of glaciers in northern Patagonia from 1985 to 2011. J Glaciol 60(224):1033–1043CrossRefGoogle Scholar
  107. Paul F, Kääb A, Maisch M, Kellenberger T, Haeberli W (2004) Rapid disintegration of Alpine glaciers observed with satellite data. Geophys Res Lett 31(21):L21402. Scholar
  108. Paul F, Maisch M, Rothenbüler C, Hoelzle M, Haeberli W (2007) Calculation and visualisation of future glacier extent in the Swiss Alps by means of hypsographic modelling. Global Planet Change 55(4):343–357CrossRefGoogle Scholar
  109. Pelto MS (2010) Forecasting temperate alpine glacier survival from accumulation zone observations. Cryosphere 4(1):67–75CrossRefGoogle Scholar
  110. Pfeffer W, Arendt AA, Bliss A, Bolch T, Cogley JG, Gardner AS, Hagen J, Hock R, Kaser G, Kienholz C, Miles ES, Moholdt G, Mölg N, Paul F, Radić V, Rastner P, Raup BH, Rich J, Sharp MJ, The Randolph Consortium (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J Glaciol 60(221):537–552CrossRefGoogle Scholar
  111. Porter SC (1975) Equilibrium-line altitudes of late Quaternary glaciers in the Southern Alps, New Zealand. Quat Res 5(1):27–47CrossRefGoogle Scholar
  112. Rabatel A, Dedieu J, Vincent C (2005) Using remote-sensing data to determine equilibrium-line altitude and mass-balance time series: validation on three French glaciers. J Glaciol 51(175):539–546CrossRefGoogle Scholar
  113. Rabatel A, Francou B, Jomelli V, Naveau P, Grancher D (2008) A chronology of the Little Ice Age in the tropical Andes of Bolivia (16°S) and its implications for climate reconstruction. Quat Res 70(2):198–212CrossRefGoogle Scholar
  114. Rabatel A, Francou B, Soruco A, Gomez J, Cáceres B, Ceballos JL, Basantes R, Vuille M, Sicart J, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot P, Maisincho L, Mendoza J, Ménégoz M, Ramirez E, Ribstein P, Suarez W, Villacis M, Wagnon P (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7(1):81–102CrossRefGoogle Scholar
  115. Radić V, Hock R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat Geosci 4(2):91–94CrossRefGoogle Scholar
  116. Reid PC, Hari RE, Beaugrand G, Livingstone DM, Marty C, Straile D, Barichivich J, Goberville E, Adrian R, Aono Y, Brown R, Foster J, Groisman P, Hélaouët P, Hsu H, Kirby R, Knight J, Kraberg A, Li J, Lo T, Myneni RB, North RP, Pounds JA, Sparks T, Stübi R, Tian Y, Wiltshire KH, Xiao D, Zhu Z (2016) Global impacts of the 1980s regime shift. Glob Change Biol 22(2):682–703CrossRefGoogle Scholar
  117. Richardson S, Reynolds J (2000) An overview of glacial hazards in the Himalayas. Quat Int 65/66(1):31–47CrossRefGoogle Scholar
  118. Ritter F, Fiebig M, Muhar A (2012) Impacts of global warming on mountaineering: a classification of phenomena affecting the Alpine Trail Network. Mt Res Dev 32(1):4–15CrossRefGoogle Scholar
  119. Rivera A, Bown F, Carrión D, Zenteno P (2012) Glacier responses to recent volcanic activity in Southern Chile. Environ Res Lett 7(1):14036. Scholar
  120. Röthlisberger F (1986) 10000 Jahre Gletschergeschichte der Erde. Sauerländer, AarauGoogle Scholar
  121. Seltzer GO (1994) Climatic interpretation of alpine snowline variations on millennial time scales. Quat Res 41(2):154–159CrossRefGoogle Scholar
  122. Solomina ON, Bradley RS, Hodgson DA, Ivy-Ochs S, Jomelli V, Mackintosh AN, Nesje A, Owen LA, Wanner H, Wiles GC, Young NE (2015) Holocene glacier fluctuations. Quat Sci Rev 111:9–34CrossRefGoogle Scholar
  123. Solomina O, Bushueva I, Dolgova E, Jomelli V, Alexandrin M, Mikhalenko V, Matskovsky V (2016) Glacier variations in the Northern Caucasus compared to climatic reconstructions over the past millennium. Global Planet Change 140:28–58CrossRefGoogle Scholar
  124. Svoboda F, Paul F (2009) A new glacier inventory on Southern Baffin Island, Canada, from ASTER data: I. Applied methods, challenges and solutions. Ann Glaciol 50(53):11–21CrossRefGoogle Scholar
  125. UNEP (2007) Global outlook for ice and snow. UNEP/GRID-Arendal NorwayGoogle Scholar
  126. Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G, Kwok R, Mote P, Murray T, Paul F, Ren J, Rignot E, Solomina O, Steffen K, Zhang T (2013) Observations: cryosphere. In: Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 317–382Google Scholar
  127. von Humboldt A (1845) Kosmos. Entwurf einer physischen Weltbeschreibung. Bd. 1. Cotta Stuttgart u. TübingenGoogle Scholar
  128. Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27(19–20):1791–1828CrossRefGoogle Scholar
  129. WGMS (2008) Global glacier changes: facts and figures. UNEP, World Glacier Monitoring Service, Zurich, SwitzerlandGoogle Scholar
  130. WGMS (2015) Global Glacier Change Bulletin No. 1 (2012–2013). World Glacier Monitoring Service, Zurich, SwitzerlandGoogle Scholar
  131. Wild M, Ohmura A, Makowski K (2007) Impact of global dimming and brightening on global warming. Geophys Res Lett 34(4):L04702. Scholar
  132. Wolken GJ (2006) High-resolution multispectral techniques for mapping former Little Ice Age terrestrial ice cover in the Canadian High Arctic. Remote Sens Environ 101(1):104–114CrossRefGoogle Scholar
  133. Wolken GJ, England JH, Dyke AS (2008) Changes in late-Neoglacial perennial snow/ice extent and equilibrium-line altitudes in the Queen Elizabeth Islands, Arctic Canada. Holocene 18(4):615–627CrossRefGoogle Scholar
  134. Zemp M, Paul F, Hoelzle M, Haeberli W (2008) Alpine glacier fluctuations 1850–2000: an overview and spatio-temporal analysis of available data and its representativity. In: Orlove B, Luckman B, Wiegandt E (eds) Darkening peaks: glacier retreat, science, and society. University of California Press, Berkeley and Los Angeles, pp 152–167Google Scholar
  135. Zemp M, Hoelzle M, Haeberli W (2009) Six decades of glacier mass balance observations - a review of the worldwide monitoring network. Ann Glaciol 50:101–111CrossRefGoogle Scholar
  136. Zemp M, Zumbühl H, Nussbaumer SI, Masiokas MEL, Pitte P (2011) Extending glacier monitoring into the Little Ice Age and beyond. PAGES news 19(2):67–69CrossRefGoogle Scholar
  137. Zemp M, Frey H, Gärtner-Roer I, Nussbaumer SU, Hoelzle M, Paul F, Haeberli W, Denzinger F, Ahlstrøm AP, Anderson B, Bajracharya S, Baroni C, Braun LN, Cáceres BE, Casassa G, Cobos G, Dávila LR, Delgado Granados H, Demuth MN, Espizua L, Fischer A, Fujita K, Gadek B, Ghazanfar A, Hagen JO, Holmlund P, Karimi N, Li Z, Pelto M, Pitte P, Popovnin VV, Portocarrero CA, Prinz R, Sangewar CV, Severskiy I, Sigurðsson O, Soruco A, Usubaliev R, Vincent C (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61(228):745–762CrossRefGoogle Scholar
  138. Zumbühl HJ, Holzhauser H (1988) Alpengletscher in der kleinen Eiszeit: Sonderheft zum 125jährigen Jubiläum des SAC. Die Alpen 64(3):129–322Google Scholar
  139. Zumbühl HJ, Steiner D, Nussbaumer SU (2008) 19th century glacier representations and fluctuations in the central and western European Alps: an interdisciplinary approach. Global Planet Change 60:42–57CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of GeographyUniversity of ZurichZurichSwitzerland

Personalised recommendations