Advertisement

Vegetation Succession and Biogeomorphic Interactions in Glacier Forelands

  • Jana EichelEmail author
Chapter
Part of the Geography of the Physical Environment book series (GEOPHY)

Abstract

Proglacial areas are not only the stage for glacial processes and paraglacial dynamics, which shape the landscape following glacier retreat. At the same time, the new terrain is colonized quickly by plants and animals. Different plant species follow each other in a sequence of successional stages. This sequence is controlled by both abiotic and biotic processes and depends on local-, landscape- and regional-scale environmental factors, such as soil properties, topography and elevation. Yet, successional sequences are often disrupted or changed by disturbances. For example, geomorphic processes delay vegetation succession, limit its development to pioneer stages or change its pathways. However, vegetation succession is not only changed by disturbances, plants can also actively influence geomorphic processes. These biogeomorphic interactions control patterned ground, glaciofluvial floodplain and moraine slope development. Once geomorphic activity decreases to a certain degree, ecosystem engineer species can establish, e.g. the dwarf shrub Dryas octopetala on lateral moraine slopes. When plant biomass reaches a certain volume, it starts to affect geomorphic processes; e.g., interactions change the dominant process on moraine slopes from slope wash and slide to bound solifluction. These biogeomorphic feedbacks stabilize the glacial sediments and facilitate establishment for later successional species, such as trees.

Keywords

Vegetation colonisation Succession Chronosequence Disturbance Biogeomorphic interactions Ecosystem engineers 

Notes

Acknowledgements

The research presented in some sections of this chapter is part of the BIMODAL (Biogeomorphic dynamics on lateral moraines in the Turtmann glacier forefield, Switzerland) project, funded by the German Research Foundation DFG (DI 414/22-1). Thanks go to two anonymous reviewers, the editor Tobias Heckmann and Daniel Draebing for helpful and constructive comments on the manuscript.

References

  1. Andreis C, Caccianiga M, Cerabolini B (2001) Vegetation and environmental factors during primary succession on glacier forelands: some outlines from the Italian Alps. Plant Biosyst 135:295–310.  https://doi.org/10.1080/11263500112331350930CrossRefGoogle Scholar
  2. Balke T (2013) Establishment of biogeomorphic ecosystems : a study on mangrove and salt marsh pioneer vegetationGoogle Scholar
  3. Balke T, Bouma TJ, Horstman EM et al (2011) Windows of opportunity: thresholds to mangrove seedling establishment on tidal flatsGoogle Scholar
  4. Balke T, Herman PM, Bouma TJ (2014) Critical transitions in disturbance-driven ecosystems: identifying Windows of Opportunity for recovery. J Ecol 102:700–708.  https://doi.org/10.1111/1365-2745.12241CrossRefGoogle Scholar
  5. Ballantyne CK (2002) Paraglacial geomorphology. Quat Sci Rev 21:1935–2017CrossRefGoogle Scholar
  6. Bast A, Wilcke W, Graf F et al (2014) The use of mycorrhiza for eco-engineering measures in steep alpine environments: effects on soil aggregate formation and fine-root development. Earth Surf Process Landf 39:1753–1763.  https://doi.org/10.1002/esp.3557CrossRefGoogle Scholar
  7. Beerling DJ (1998) Salix herbacea L. J Ecol 86:872–895.  https://doi.org/10.1046/j.1365-2745.1998.8650872.xCrossRefGoogle Scholar
  8. Benninghoff WS (1952) Interaction of vegetation and soil frost phenomena. Arctic 5:34–44.  https://doi.org/10.14430/arctic3898CrossRefGoogle Scholar
  9. Birks HJB (1980) The present flora and vegetation of the moraines of the Klutlan Glacier, Yukon Territory, Canada: a study in plant succession. Quat Res 14:60–86.  https://doi.org/10.1016/0033-5894(80)90007-1CrossRefGoogle Scholar
  10. Bogen J (1988) Glacial sediment production and development of hydro-electric power in glacierized areas. Ann Glaciol 13:6–11CrossRefGoogle Scholar
  11. Burga CA, Krusi B, Egli M et al (2010) Plant succession and soil development on the foreland of the Morteratsch glacier (Pontresina, Switzerland): Straight forward or chaotic? Flora-Morphol Distrib Funct Ecol Plants 205:561–576CrossRefGoogle Scholar
  12. Caccianiga M, Luzzaro A, Pierce S et al (2006) The functional basis of a primary succession resolved by CSR classification. Oikos 112:10–20CrossRefGoogle Scholar
  13. Cannone N, Diolaiuti G, Guglielmin M, Smiraglia C (2008) Accelerating climate change impacts on alpine glacier forefield ecosystems in the European Alps. Ecol Appl 18:637–648.  https://doi.org/10.1890/07-1188.1CrossRefGoogle Scholar
  14. Chapin FS, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175.  https://doi.org/10.2307/2937039CrossRefGoogle Scholar
  15. Clements FE (1928) Plant succession and indicators: a definitive edition of plant succession and plant indicators. The Wilson Company, New YorkGoogle Scholar
  16. Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144CrossRefGoogle Scholar
  17. Cooper EJ, Alsos IG, Hagen D et al (2004) Plant recruitment in the High Arctic: seed bank and seedling emergence on Svalbard. J Veg Sci 15:115–124.  https://doi.org/10.1658/1100-9233(2004)015%5b0115:PRITHA%5d2.0.CO;2CrossRefGoogle Scholar
  18. Corenblit D, Baas A, Balke T et al (2015) Engineer pioneer plants respond to and affect geomorphic constraints similarly along water–terrestrial interfaces world-wide. Glob Ecol Biogeogr 24:1363–1376.  https://doi.org/10.1111/geb.12373CrossRefGoogle Scholar
  19. Corenblit D, Tabacchi E, Steiger J, Gurnell AM (2007) Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: a review of complementary approaches. Earth Sci Rev 84:56–86CrossRefGoogle Scholar
  20. Corenblit D, Steiger J, Delmotte S (2010) Abiotic, residual and functional components of landforms. Earth Surf Process Landf 35:1744–1750.  https://doi.org/10.1002/esp.2064CrossRefGoogle Scholar
  21. Cowie NM, Moore RD, Hassan MA (2014) Effects of glacial retreat on proglacial streams and riparian zones in the Coast and North Cascade Mountains. Earth Surf Process Landf 39:351–365.  https://doi.org/10.1002/esp.3453CrossRefGoogle Scholar
  22. Curry AM, Cleasby V, Zukowskyj P (2006) Paraglacial response of steep, sediment-mantled slopes to post-“Little Ice Age” glacier recession in the central Swiss Alps. J Quat Sci 21:211–225.  https://doi.org/10.1002/jqs.954CrossRefGoogle Scholar
  23. D’Amico ME, Freppaz M, Filippa G, Zanini E (2014) Vegetation influence on soil formation rate in a proglacial chronosequence (Lys Glacier, NW Italian Alps). Catena 113:122–137.  https://doi.org/10.1016/j.catena.2013.10.001CrossRefGoogle Scholar
  24. Dierschke H (1994) Pflanzensoziologie: Grundlagen und Methoden. UTB, StuttgartGoogle Scholar
  25. Egli M, Wernli M, Burga C et al (2011) Fast but spatially scattered smectite-formation in the proglacial area Morteratsch: an evaluation using GIS. Geoderma 164:11–21.  https://doi.org/10.1016/j.geoderma.2011.05.001CrossRefGoogle Scholar
  26. Eichel J, Krautblatter M, Schmidtlein S, Dikau R (2013) Biogeomorphic interactions in the Turtmann glacier forefield, Switzerland. Geomorphology 201:98–110.  https://doi.org/10.1016/j.geomorph.2013.06.012CrossRefGoogle Scholar
  27. Eichel J, Corenblit D, Dikau R (2016) Conditions for feedbacks between geomorphic and vegetation dynamics on lateral moraine slopes: a biogeomorphic feedback window. Earth Surf Process Landf 41:406–419.  https://doi.org/10.1002/esp.3859CrossRefGoogle Scholar
  28. Eichel J, Draebing D, Klingbeil L, Wieland M, Eling C, Schmidtlein S, Kuhlmann H, Dikau R (2017) Solifluction meets vegetation: the role of biogeomorphic feedbacks for turf-banked solifluction lobe development. Earth Surf Proc Land 42(11):1623–1635CrossRefGoogle Scholar
  29. Elkington TT (1971) Dryas Octopetala L. J Ecol 59:887–905.  https://doi.org/10.2307/2258146CrossRefGoogle Scholar
  30. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen: in ökologischer, dynamischer und historischer Sicht. UTB, StuttgartGoogle Scholar
  31. Erschbamer B, Mayer R (2011) Can successional species groups be discriminated based on their life history traits? A study from a glacier foreland in the Central Alps. Plant Ecol Divers 4:341–351.  https://doi.org/10.1080/17550874.2012.664573CrossRefGoogle Scholar
  32. Erschbamer B, Niederfriniger Schlag R, Winkler E (2008) Colonization processes on a central Alpine glacier foreland. J Veg Sci 19:855–862.  https://doi.org/10.3170/2008-8-18464CrossRefGoogle Scholar
  33. Fattet M, Fu Y, Ghestem M et al (2011) Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength. Catena 87:60–69.  https://doi.org/10.1016/j.catena.2011.05.006CrossRefGoogle Scholar
  34. Fickert T, Friend D, Grüninger F et al (2007) Did debris-covered glaciers serve as Pleistocene refugia for plants? A new hypothesis derived from observations of recent plant growth on glacier surfaces. Arct Antarct Alp Res 39:245–257.  https://doi.org/10.1657/1523-0430(2007)39%5b245:DDGSAP%5d2.0.CO;2CrossRefGoogle Scholar
  35. Garibotti IA, Pissolito CI, Villalba R (2011) Spatiotemporal pattern of primary succession in relation to meso-topographic gradients on recently deglaciated terrains in the Patagonian Andes. Arct Antarct Alp Res 43:555–567.  https://doi.org/10.1657/1938-4246-43.4.555CrossRefGoogle Scholar
  36. Ghestem M, Sidle RC, Stokes A (2011) The influence of plant root systems on subsurface flow: implications for slope stability. Bioscience 61:869–879.  https://doi.org/10.1525/bio.2011.61.11.6CrossRefGoogle Scholar
  37. Ghestem M, Veylon G, Bernard A et al (2014) Influence of plant root system morphology and architectural traits on soil shear resistance. Plant Soil 377:43–61.  https://doi.org/10.1007/s11104-012-1572-1CrossRefGoogle Scholar
  38. Graf F, Frei M, Böll A (2009) Effects of vegetation on the angle of internal friction of a moraine. For Snow Landsc Res 82:61–77Google Scholar
  39. Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194CrossRefGoogle Scholar
  40. Gunderson LH (2000) Ecological resilience–in theory and application. Ann Rev Ecol Syst 31:425–439CrossRefGoogle Scholar
  41. Gurnell A (2014) Plants as river system engineers. Earth Surf Process Landf 39:4–25.  https://doi.org/10.1002/esp.3397CrossRefGoogle Scholar
  42. Gurnell AM, Bertoldi W, Corenblit D (2012) Changing river channels: the roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth Sci Rev 111:129–141.  https://doi.org/10.1016/j.earscirev.2011.11.005CrossRefGoogle Scholar
  43. Gurnell AM, Edwards PJ, Petts GE, Ward JV (2000) A conceptual model for alpine proglacial river channel evolution under changing climatic conditions. Catena 38:223–242.  https://doi.org/10.1016/S0341-8162(99)00069-7CrossRefGoogle Scholar
  44. Harrington TJ, Mitchell DT (2002) Characterization of Dryas octopetala ectomycorrhizas from limestone karst vegetation, western Ireland. Can J Bot 80:970–982.  https://doi.org/10.1139/b02-082CrossRefGoogle Scholar
  45. Harris C, Smith JS, Davies MCR, Rea B (2008) An investigation of periglacial slope stability in relation to soil properties based on physical modelling in the geotechnical centrifuge. Geomorphology 93:437–459.  https://doi.org/10.1016/j.geomorph.2007.03.009CrossRefGoogle Scholar
  46. Hauenstein W (2005) Hydropower and climate change—A reciprocal relation: institutional energy issues in Switzerland. Mt Res Dev 25:321–325.  https://doi.org/10.1659/0276-4741(2005)025%5b0321:HACCRR%5d2.0.CO;2CrossRefGoogle Scholar
  47. Haugland JE (2006) Short-term periglacial processes, vegetation succession, and soil development within sorted patterned ground: Jotunheimen, Norway. Arct Antarct Alp Res 38:82–89CrossRefGoogle Scholar
  48. Haugland JE, Beatty SW (2005) Vegetation establishment, succession and microsite frost disturbance on glacier forelands within patterned ground chronosequences. J Biogeogr 32:145–153CrossRefGoogle Scholar
  49. Hendry GA, Grime JP (1993) Methods in comparative plant ecology: A laboratory manual. Springer, The NetherlandsCrossRefGoogle Scholar
  50. Holling CS, Gunderson LH (2002) Resilience and adaptive cycles. In: Gunderson L, Holling CS (eds) Panarchy: understanding transformations in human and natural systems. Island Press, Washington, DC, pp 63–102Google Scholar
  51. Hormes A, Müller BU, Schlüchter C (2001) The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. Holocene 11:255–265.  https://doi.org/10.1191/095968301675275728CrossRefGoogle Scholar
  52. Jochimsen M (1962) Das Gletschervorfeld - keine Wüste. Jahrb Österr Alpenvereins 87:135–142Google Scholar
  53. Jones CG (2012) Ecosystem engineers and geomorphological signatures in landscapes. Geomorphology 157–158:75–87.  https://doi.org/10.1016/j.geomorph.2011.04.039CrossRefGoogle Scholar
  54. Jones CG, Lawton JH, Shachack M (1994) Organisms as ecosystem engineers. Oikos 69:373–386.  https://doi.org/10.2307/3545850CrossRefGoogle Scholar
  55. Jumpponen A, Vare H, Mattson KG et al (1999) Characterization of “safe sites” for pioneers in primary succession on recently deglaciated terrain. J Ecol 87:98–105CrossRefGoogle Scholar
  56. Kaufmann R (2002) Glacier foreland colonisation: distinguishing between short-term and long-term effects of climate change. Oecologia 130:470–475.  https://doi.org/10.1007/s00442-001-0815-2CrossRefGoogle Scholar
  57. Klanderud K, Totland Ø (2004) Habitat dependent nurse effects of the dwarf-shrub Dryas octopetala on alpine and arctic plant community structure. Écoscience 11:410–420.  https://doi.org/10.1080/11956860.2004.11682850CrossRefGoogle Scholar
  58. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, BerlinCrossRefGoogle Scholar
  59. Kuen V, Erschbamer B (2002) Comparative study between morphology and age of Trifolium pallescens in a glacier foreland of the Central Alps. Flora Morphol Distrib Funct Ecol Plants 197:379–384.  https://doi.org/10.1078/0367-2530-00054CrossRefGoogle Scholar
  60. Kutschera L, Lichtenegger E, Sobotik M (1997) Bewurzelung von Pflanzen in verschiedenen Lebensräumen. OÖ Landesmuseum, LinzGoogle Scholar
  61. Lavorel S, Díaz S, Cornelissen J et al (2007) Plant functional types: are we getting any closer to the holy grail? In: Canadell JG, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world, pp 149–164Google Scholar
  62. Lüdi W (1945) Besiedlung und Vegetationsentwicklung auf den jungen Seitenmoränen des grossen Aletschgletschers: mit einem Vergleich der Besiedlung im Vorfeld des Rhonegletschers und des Oberen GrindelwaldgletschersGoogle Scholar
  63. Lüdi W (1958) Beobachtung über die Besiedlung von Gletschervorfeldern in den SchweizeralpenGoogle Scholar
  64. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  65. MacDonald G (2002) Biogeography: introduction to space, time and life. John, New YorkGoogle Scholar
  66. Marcante S, Winkler E, Erschbamer B (2009) Population dynamics along a primary succession gradient: do alpine species fit into demographic succession theory? Ann Bot 103:1129–1143.  https://doi.org/10.1093/aob/mcp047CrossRefGoogle Scholar
  67. Matthews JA (1992) The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands. Cambridge University Press, CambridgeGoogle Scholar
  68. Matthews JA (1999) Disturbance regimes and ecosystem response on recently-deglaciated terrain. In: Walker LR (ed) Ecosystems of disturbed ground. Elsevier, Amsterdam, pp 17–37Google Scholar
  69. Matthews JA, Vater AE (2015) Pioneer zone geo-ecological change: Observations from a chronosequence on the Storbreen glacier foreland, Jotunheimen, southern Norway. Catena 135:219–230.  https://doi.org/10.1016/j.catena.2015.07.016CrossRefGoogle Scholar
  70. Matthews JA, Whittaker RJ (1987) Vegetation succession on the Storbreen glacier foreland, Jotunheimen, Norway: a review. Arct Alp Res 19:385–395.  https://doi.org/10.2307/1551403CrossRefGoogle Scholar
  71. Matthews JA, Shakesby RA, Berrisford MS, McEwen LJ (1998) Periglacial patterned ground on the Styggedalsbreen glacier foreland, Jotunheimen, southern Norway: micro-topographic, paraglacial and geoecological controls. Permafr Periglac Process 9:147–166.  https://doi.org/10.1002/(SICI)1099-1530(199804/06)9:2%3c147:AID-PPP278%3e3.0.CO;2-9CrossRefGoogle Scholar
  72. Mercier D, Étienne S, Sellier D, André M (2009) Paraglacial gullying of sediment-mantled slopes: a case study of Colletthøgda, Kongsfjorden area, West Spitsbergen (Svalbard). Earth Surf Process Landf 34:1772–1789.  https://doi.org/10.1002/esp.1862CrossRefGoogle Scholar
  73. Milner AM, Fastie CL, Chapin FS III et al (2007) Interactions and linkages among ecosystems during landscape evolution. Bioscience 57:237–247CrossRefGoogle Scholar
  74. Minami Y, Okitsu S, Kanda H (1997) Relationship between plant community and topographic factor on the moraine at deglaciated Arctic terrain in Ny-Alesund, Svalbard. Bull Fac Agr Tamagawa Univ, 21–30Google Scholar
  75. Moreau M, Laffly D, Joly D, Brossard T (2005) Analysis of plant colonization on an Arctic moraine since the end of the Little Ice Age using remotely sensed data and a Bayesian approach. Remote Sens Environ 99:244–253CrossRefGoogle Scholar
  76. Moreau M, Mercier D, Laffly D, Roussel E (2008) Impacts of recent paraglacial dynamics on plant colonization: a case study on Midtre Lovénbreen foreland, Spitsbergen (79°N). Geomorphology 95:48–60CrossRefGoogle Scholar
  77. Moreau M, Mercier D, Laffly D (2004) Un siècle de dynamiques paraglaciaires et végétal sur les marges du Midre Lovénbreen, Spitsberg nord-occidental/a century of paraglacial and plant dynamics in the Midre Lovénbreen foreland (northwestern Spitsbergen). Géomorphol Relief Process Environ 10:157–168CrossRefGoogle Scholar
  78. Nagl F, Erschbamer B (2010) Kapitel 6. Pflanzliche Sukzessionen im Gletschervorfeld. Vegetation und Besiedlungsstrategien. In: Erschbamer B, Koch EM (eds) Glaziale und periglaziale Lebensräume im Raum Obergurgl. Innsbruck University press, Innsbruck, pp 121–142Google Scholar
  79. Nicolussi K, Patzelt G (2000) Discovery of early Holocene wood and peat on the forefield of the Pasterze Glacier, Eastern Alps, Austria. Holocene 10:191–199.  https://doi.org/10.1191/095968300666855842CrossRefGoogle Scholar
  80. Oliver CD, Adams AB, Zasoski RJ (1985) Disturbance patterns and forest development in a recently deglaciated valley in the northwestern Cascade Range of Washington, U.S.A. Can J For Res 15:221–232.  https://doi.org/10.1139/x85-040CrossRefGoogle Scholar
  81. Paul F, Kaab A, Maisch M et al (2004) Rapid disintegration of Alpine glaciers observed with satellite data. Geophys Res Lett 31:L21402.  https://doi.org/10.1029/2004GL020816CrossRefGoogle Scholar
  82. Pickett STA, White PS (1987) The ecology of natural disturbance and patch dynamics. Academic PressGoogle Scholar
  83. Prach K, Rachlewicz G (2012) Succession of vascular plants in front of retreating glaciers in central Spitsbergen. Pol Polar Res.  https://doi.org/10.2478/v10183-012-0022-3CrossRefGoogle Scholar
  84. Raab T, Krümmelbein J, Schneider A et al (2012) Initial Eecosystem processes as key factors of landscape development—a review. Phys Geogr 33:305–343.  https://doi.org/10.2747/0272-3646.33.4.305CrossRefGoogle Scholar
  85. Raffl C, Mallaun M, Mayer R, Erschbamer B (2006) Vegetation succession pattern and diversity changes in a glacier valley, Central Alps, Austria. Arct Antarct Alp Res 38:421–428.  https://doi.org/10.1657/1523-0430(2006)38%5b421:VSPADC%5d2.0.CO;2CrossRefGoogle Scholar
  86. Rauh W (1939) Über polsterförmigen Wuchs. Ein Beitrag zur Kenntnis der Wuchsformen der höheren Pflanzen. Nova Acta Leopold, 272–505Google Scholar
  87. Raymond Pralong M, Turowski JM, Beer A et al (2011) Klimaänderung und Wasserkraft. Sektorielle Studie Wallis. Auswirkung der Klimaänderung auf die GeschiebefrachtGoogle Scholar
  88. Reisigl H, Keller R (1994) Alpenpflanzen im Lebensraum, Spektrum Akademischer VerlagGoogle Scholar
  89. Richter M (1994) Die Pflanzensukzession im Vorfeld des Tschierva-Gletschers/Oberengadin. Geoökodynamik 15:55–88Google Scholar
  90. Robbins JA, Matthews JA (2010) Regional variation in successional trajectories and rates of vegetation change on glacier forelands in South-Central Norway. Arct Antarct Alp Res 42:351–361.  https://doi.org/10.1657/1938-4246-42.3.351CrossRefGoogle Scholar
  91. Robbins JA, Matthews JA (2014) Use of ecological indicator values to investigate successional change in boreal to high-alpine glacier-foreland chronosequences, southern Norway. Holocene 24:1453–1464.  https://doi.org/10.1177/0959683614544067CrossRefGoogle Scholar
  92. Rydgren K, Halvorsen R, Töpper JP, Njøs JM (2014) Glacier foreland succession and the fading effect of terrain age. J Veg Sci 25:1367–1380.  https://doi.org/10.1111/jvs.12184CrossRefGoogle Scholar
  93. Schröter C, Brockmann-Jerosch H, Brockmann-Jerosch MC et al (1926) Das Pflanzenleben der Alpen. Verlag von Albert Raustein, ZürichGoogle Scholar
  94. Schweingruber FH, Münch A, Schwarz R (2007) Dendrochronologie von Kräutern und Sträuchern im Vorfeld des Morteratschgletschers. BAUHINIA Z Basl Bot Ges 20:5–17Google Scholar
  95. Schwienbacher E, Navarro-Cano JA, Neuner G, Erschbamer B (2012) Correspondence of seed traits with niche position in glacier foreland succession. Plant Ecol 213:371–382.  https://doi.org/10.1007/s11258-011-9981-4CrossRefGoogle Scholar
  96. Sharp RP (1958) The latest major advance of Malaspina Glacier, Alaska. Geogr Rev 48:16–26.  https://doi.org/10.2307/211699CrossRefGoogle Scholar
  97. Stöcklin J, Bäumler E (1996) Seed rain, seedling establishment and clonal growth strategies on a glacier foreland. J Veg Sci 7:45–56.  https://doi.org/10.2307/3236415CrossRefGoogle Scholar
  98. Tansley AG (1920) The classification of vegetation and the concept of development. J Ecol, 118–149CrossRefGoogle Scholar
  99. Thorn CE (1976) A model of stony earth circle development, Schefferville, Quebec. In: Proceedings of the Association of American Geographers, pp 19–23Google Scholar
  100. Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice: pattern and process. Springer, New YorkGoogle Scholar
  101. Vetaas OR (1997) Relationships between floristic gradients in a primary succession. J Veg Sci, 665–676CrossRefGoogle Scholar
  102. Veylon G, Ghestem M, Stokes A, Bernard A (2015) Quantification of mechanical and hydric components of soil reinforcement by plant roots. Can Geotech J 52:1839–1849.  https://doi.org/10.1139/cgj-2014-0090CrossRefGoogle Scholar
  103. Viles HA (2004) Biogeomorphology. In: Goudie A (ed) Encyclopedia of Geomorphology, 1st edn. Routledge, LondonGoogle Scholar
  104. Violle C, Navas ML, Vile D et al (2007) Let the concept of trait be functional! Oikos 116:882–892.  https://doi.org/10.1111/j.0030-1299.2007.15559.xCrossRefGoogle Scholar
  105. Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  106. Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736.  https://doi.org/10.1111/j.1365-2745.2010.01664.xCrossRefGoogle Scholar
  107. Welker JM, Molau U, Parsons AN et al (1997) Responses of Dryas octopetala to ITEX environmental manipulations: a synthesis with circumpolar comparisons. Glob Change Biol 3:61–73.  https://doi.org/10.1111/j.1365-2486.1997.gcb143.xCrossRefGoogle Scholar
  108. White PS (1979) Pattern, process, and natural disturbance in vegetation. Bot Rev 45:229–299.  https://doi.org/10.1007/BF02860857CrossRefGoogle Scholar
  109. Whittaker RH (1974) Climax concepts and recognition. In: Knapp R (ed) Vegetation Dynamics. Springer, The Netherlands, pp 137–154CrossRefGoogle Scholar
  110. Wijk S (1986) Performance of Salix Herbacea in an alpine snow-bed gradient. J Ecol 74:675–684.  https://doi.org/10.2307/2260390CrossRefGoogle Scholar
  111. Wilmanns O (1993) Ökologische Pflanzensoziologie. Quelle & Meyer, HeidelbergGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations