A Sediment Budget of the Upper Kaunertal

  • Ludwig Hilger
  • Jana-Marie Dusik
  • Tobias Heckmann
  • Florian Haas
  • Philipp Glira
  • Norbert Pfeifer
  • Lucas Vehling
  • Joachim Rohn
  • David Morche
  • Henning Baewert
  • Martin Stocker-Waldhuber
  • Michael Kuhn
  • Michael Becht
Part of the Geography of the Physical Environment book series (GEOPHY)


This chapter presents the sediment budget of the Upper Kaunertal (Kauner valley, Ötztal Alps, Austria) for the years 2012–2014 as obtained in the framework of the PROSA (high-resolution measurements of morphodynamics in rapidly changing PROglacial Systems of the Alps) research project. An important methodological basis of this high-mountain sediment budget is the usage of study area-wide LiDAR data (TLS and ALS) of comparatively high temporal and spatial resolution to measure rates of erosion and deposition, and to regionalize/upscale rates at the local scale. After several billion measurement points and data from fieldwork, mapping, and modeling efforts had been processed and evaluated, it was possible to identify and quantify sediment transfer by all relevant processes at the scale of the 62 km2 study area. These processes include rockfall of three different magnitude classes, debris flows, avalanches, creep on talus, fluvial processes (hillslopes and main fluvial system), rock glaciers, and glaciers. After a short presentation of the process-specific methods to obtain catchment-wide rates, we discuss process-specific results and the budget. The sediment budget does not only show the relative importance of the mentioned processes and spatial subunits (proglacial vs. non-proglacial) in the Upper Kaunertal. It also gives insight into the importance of high-magnitude events and the configuration of the sediment transport system.


PROSA project Sediment budget Measurement Geomorphological map Regionalisation Spatial modelling 



The measurement of different processes in a high-mountain area over a time period of several years is a demanding task. In addition to the authors, several student assistances provided very valuable help and support in the field, performed analysis in the laboratory, helped in mapping efforts, and even produced intermediate results. Especially mentionable is the field and laboratory work as well as mass calculations for avalanches by Martin Näher and Phillip Rumohr. Important results on rock glacier movement have been provided by Philip Neugirg, while Florian Riehl worked with data from the sediment traps in hillslope channels. Other student assistants the authors would like to thank are Sarah Betz, Stefan Löser, Sebastian Wiggenhauser, Hendrik Hövel, Kerstin Schlobies, Arnt Luthart, Anne Schuchardt, Matthias Faust, Martin Weber, Eric Rascher and Karolin Dubberke, Alexander Bryk and Shannon Hibbard.


  1. André MF (2007) Geomorphic impact of spring avalanches in Northwest Spitsbergen (79° N). Permafrost Periglac Process 1:97–110. Scholar
  2. Baewert H, Morche D (2014) Coarse sediment dynamics in a proglacial fluvial system (Fagge River, Tyrol). Geomorphology 218:88–97. Scholar
  3. Baggi S, Schweizer J (2009) Characteristics of wet-snow avalanche activity: 20 years of observations from a high alpine valley (Dischma, Switzerland). Nat Hazards 50:97–108. Scholar
  4. Becht M (1995) Untersuchungen zur aktuellen Reliefentwicklung in alpinen Einzugsgebieten. Münchener Geographische Abhandlungen A47. GEOBUCH, MünchenGoogle Scholar
  5. Bell I, Gardner J, de Scally F (1990) An estimate of snow avalanche debris transport, Kaghan Valley, Himalaya, Pakistan. Arct Alp Res 22:317. Scholar
  6. Berger J, Krainer K, Mostler W (2004) Dynamics of an active rock glacier (Ötztal Alps, Austria). Quatern Res 62:233–242. Scholar
  7. Beylich AA (2000) Geomorphology, sediment budget, and relief development in Austdalur, Austfirðir, East Iceland. Arct Antarct Alp Res 32:466–477Google Scholar
  8. Beylich A, Lamoureux S, Decaulne A (2011) Developing frameworks for studies on sedimentary fluxes and budgets in changing cold environments. Quaestiones Geographicae. Scholar
  9. Caine T (1986) Sediment movement and storage on alpine slopes in the Colorado Rocky Mountains. Allen and Unwin, BostonGoogle Scholar
  10. Caine SF (1989) Geomorphic coupling of hillslope and channel systems in two small mountain basins. Zeitschrift fur Geomorphologie 33:189–203Google Scholar
  11. Canty A, Ripley BD (2016) R package bootGoogle Scholar
  12. Ceaglio E, Freppaz M, Maggioni M et al (2010) Full-depth avalanches and soil erosion: an experimental site in NW Italy, p 15565Google Scholar
  13. Damm B, Felderer A (2008) Identifikation und Abschätzung von Murprozessen als Folge von Gletscherrückgang und Permafrostdegradation im Naturpark Rieserferner-Ahrn (Südtirol); (Identification and assessment of debris flows as a consequence of glacier retreat and permafrost degradation in the area of Rieserferner-Ahrn, South Tyrol (in German). Abhandlungen der Geologischen Bundesanstalt, 29–32Google Scholar
  14. Dusik JM (2013) Vergleichende Untersuchungen zur rezenten Dynamik von Blockgletschern im Kaunertal dargestellt an Beispielen aus dem Riffeltal und der Inneren Ölgrube: thesis Cath. University Eichstaett-IngolstadtGoogle Scholar
  15. Dusik JM, Leopold M, Heckmann T et al (2015) Influence of glacier advance on the development of the multipart Riffeltal rock glacier, Central Austrian Alps. Earth Surf Proc Land 40:965–980. Scholar
  16. Freppaz M, Godone D, Filippa G, Maggioni M, Lunardi S, Williams MW, Zanini E (2010) Soil erosion caused by snow avalanches: a case study in the Aosta Valley (NW Italy). Arct Antarct Alp Res 42:412–421. Scholar
  17. Gardner JS (1983) Observations on erosion by wet snow avalanches, Mount Rae Area, Alberta, Canada. Arct Alp Res 15:271. Scholar
  18. Gärtner-Roer I (2012) Sediment transfer rates of two active rockglaciers in the Swiss Alps. Geomorphology 167–168:45–50. Scholar
  19. Giese P (1963) Some results of seismic refraction work at the Gepatsch glacier in the Oetztal Alps. IAHS Publication 61:154–161Google Scholar
  20. Glira P, Briese C, Pfeifer N, Dusik JM, Hilger L, Neugirg F, Baewert H (2014) Accuracy analysis of height difference models derived from terrestrial laser scanning point clouds. European Geosciences Union. Geophys Res AbstractsGoogle Scholar
  21. Haas F (2008) Fluviale Hangprozesse in Alpinen Einzugsgebieten der Nördlichen Kalkalpen; Quantifizierung und Modellierungsansätze. (=Eichstaetter Geographische Arbeiten 17) Profil-Verl., München/WienGoogle Scholar
  22. Haas F, Heckmann T, Becht M, Cyffka B (2011) Ground-based laserscanning—a new method for measuring fluvial erosion on steep slopes. In: Hafeez MM (ed) GRACE, remote sensing and ground-based methods in multi-scale hydrology. Proceedings of the symposium JHS01 held during the IUGG GA in Melbourne (28 June–7 Jullet 2011). IAHS Publication, Wallingford, S 163–168Google Scholar
  23. Haas F, Heckmann T, Hilger L, Becht M (2012) Quantification and modelling of debris flows in the proglacial area of the Gepatschferner/Austria using ground-based LIDAR. In: Collins AL, Golosov V, Horowitz AJ, Lu X, Stone M, Walling DE, Zhang X (eds) Erosion and sediment yields in the changing environment: proceedings of an IAHS international commission on continental erosion symposium, held at the institute of mountain hazards and environment, CAS-Chengdu, China, 11–15 Oct 2012. Wallingford, pp 293–302Google Scholar
  24. Hausmann H, Krainer K, Brückl E, Mostler W (2007) Creep of two alpine rock glaciers: observation and modelling (Ötztal- and Stubai Alps, Austria). Grazer Schriften der Geographie und Raumforschung 43:145–150Google Scholar
  25. Hausmann H, Krainer K, Brückl E, Ullrich C (2012) Internal structure, ice content and dynamics of Ölgrube and Kaiserberg rock glaciers (Ötztal Alps, Austria) determined from geophysical surveys. Austrian J Earth Sci 105:12–31Google Scholar
  26. Heckmann T (2006) Untersuchungen zum Sedimenttransport durch Grundlawinen in zwei Einzugsgebieten der Nördlichen Kalkalpen: Quantifizierung, Analyse und Ansätze zur Modellierung der geomorphologischen Aktivität. (=Eichstaetter Geographische Arbeiten 14) Profil-Verl. München/WienGoogle Scholar
  27. Heckmann T, Schwanghart W (2013) Geomorphic coupling and sediment connectivity in an alpine catchment—exploring sediment cascades using graph theory. Geomorphology 182:89–103. Scholar
  28. Heckmann T, Wichmann V, Becht M (2002) Quantifying sediment transport by avalanches in the bavarian alps—first results. Z Geomorph N.F Suppl 127:137–152Google Scholar
  29. Heckmann T, Hilger L, Vehling L, Becht M (2016) Integrating field measurements, a geomorphological map and stochastic modelling to estimate the spatially distributed rockfall sediment budget of the Upper Kaunertal, Austrian Central Alps. Geomorphology 260:16–31. Scholar
  30. Hilger L (2017) Quantification and regionalization of geomorphic processes using spatial models and high-resolution topographic data: a sediment budget of the Upper Kauner Valley, Ötztal Alps (Doctoral Dissertation Cath. University of Eichstaett-Ingolstadt).
  31. Jomelli V (1999) Les effets de la fonte sur la sédimentation de dépôts d’avalanche de neige chargée dans le massif des Ecrins (Alpes françaises)/The effects of the snow melt on the sedimentation of dirty snow avalanche deposits in the Ecrins Massif (French Alps). Géomorphologie: relief, processus, environnement 5:39–57. Scholar
  32. Jomelli V, Bertran P (2001) Wet snow avalanche deposits in the French alps: structure and sedimentology. Geogr Ann Ser A Phys Geogr 83:15–28. Scholar
  33. Kaufmann V, Ladstädter R (2003) Quantitative analysis of rock glacier creep by means of digital photogrammetry using multi-temporal aerial photographs: two case studies in the Austrian Alps. In: Proceedings of the 8th international conference on permafrost, pp 21–25Google Scholar
  34. Kerschner H (1979) Spätglaziale Getscherstände im inneren Kaunertal (Ötzta-ler Alpen). In: Keller W (ed) Studien zur Landeskunde Tirols und angrenzender Gebiete. Vol. 6. Leidlmair-Festschrift; 2 of Innsbrucker geographische Studien. Inst. für Geographie der Univ. Innsbruck, Innsbruck, pp 235–248Google Scholar
  35. Kneisel C, Lehmkuhl F, Winkler S, Tressel E, Schröder H (1998) Legende für geomorphologische Kartierungen in Hochgebirgen (GMK Hochgebirge). Trierer Geographische Studien 18. TrierGoogle Scholar
  36. Korup O, Rixen C (2014) Soil erosion and organic carbon export by wet snow avalanches. Cryosphere 8:651–658. Scholar
  37. Krainer K, Mostler W, Spötl C (2007) Discharge from active rock glaciers, Austrian Alps: a stable isotope approach. Austrian J Earth Sci 100:102–112Google Scholar
  38. Krautblatter M, Moser M, Schrott L, Wolf J, Morche D (2012) Significance of rockfall magnitude and carbonate dissolution for rock slope erosion and geomorphic work on Alpine limestone cliffs (Reintal, German Alps). Geomorphology 167:21–34CrossRefGoogle Scholar
  39. Lane SN, Westaway RM, Murray Hicks D (2003) Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surf Proc Land 28:249–271CrossRefGoogle Scholar
  40. Legg NT, Meigs AJ, Grant GE, Kennard P (2014) Debris flow initiation in proglacial gullies on Mount Rainier, Washington. Geomorphology 226:249–260. Scholar
  41. Loye A, Jaboyedoff M, Pedrazzini A (2009) Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis. Nat Hazards Earth Syst Sci 9:1643–1653. Scholar
  42. Luckman BH (1977) The geomorphic activity of snow avalanches. Geogr Ann Ser A, Phys Geogr 59:31. Scholar
  43. Marquínez J, Duarte RM, Farias P, Sánchez MJ (2003) Predictive GIS-based model of rockfall activity in mountain cliffs. Nat Hazards 30:341–360. Scholar
  44. Moore JR, Egloff J, Nagelisen J, Hunziker M, Aerne U, Christen M (2013) Sediment transport and bedrock erosion by wet snow avalanches in the Guggigraben, Matter Valley, Switzerland. Arct Antarct Alp Res 45:350–362. Scholar
  45. Morche D, Baewert H, Bryk A (2014) Bed load transport in a proglacial river (Fagge, Gepatschferner, Tyrol). EGU. Geophys Res AbstractsGoogle Scholar
  46. Näher M (2013) Analyse des Sedimenttransports durch Grundlawinen im Kaunertal zur Quantifizierung des Sedimentbudgets mittels Verfahren aus der terrestrischen Photogrammetrie. M.Sc. thesis Cath. University of Eichstaett-IngolstadtGoogle Scholar
  47. Neugirg P (2013) Beurteilung der Dynamik und Quantifizierung des Sediment-haushalts von ausgewählten Blockgletschern im Gletschervorfeld des Gepatsch-ferners (hinteres Kaunertal) auf Grundlage von multitemporalen LiDAR-Daten und Luftbildern: B.Sc. thesis Cath. University Eichstaett-IngolstadtGoogle Scholar
  48. Otto JC (2006) Paraglacial sediment storage quantification in the Turtmann Valley, Swiss Alps. Doctoral Dissertation, University of BonnGoogle Scholar
  49. Rumohr P (2015) Quantifizierung des Sedimenttransports durch Grundlawi-nen im oberen Kaunertal mittels gravimetrischer und terrestrischphotogrammetri-scher Verfahren: M.Sc. thesis Cath. University of Eichstaett-IngolstadtGoogle Scholar
  50. Saemundsson Þ, Decaulne A, Jónsson HP (2008) Sediment transport associated with snow avalanche activity and its implication for natural hazard management in Iceland. In: International symposium on mitigative measures against snow avalanches, pp 137–142Google Scholar
  51. Sanders JW, Cuffey KM, MacGregor KR, Collins BD (2013) The sediment budget of an alpine cirque. Geol Soc Am Bull 125:229–248. Scholar
  52. Sass O (2005) Temporal variability of rockfall in the Bavarian Alps, Germany. Arct Antarct Alp Res 37:564–573CrossRefGoogle Scholar
  53. Sass O, Heel M, Hoinkis R, Wetzel K-F (2010) A six-year record of debris transport by avalanches on a wildfire slope (Arnspitze, Tyrol). Zeitschrift für Geomorphologie 54:181–193CrossRefGoogle Scholar
  54. Scambos TA, Dutkiewicz MJ, Wilson JC, Bindschadler RA (1992) Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sens Environ 42:177–186CrossRefGoogle Scholar
  55. Schulz E, Dornblut S (2002) Herstellung von Geländemodellen und Ortho-photos im Wettersteingebirge. Diploma thesis, Technische Fachhochschule, BerlinGoogle Scholar
  56. Söderman G (2013) Slope processes in cold environments of Northern Finland. Fennia-Int J Geogr 158:83–152Google Scholar
  57. Stocker-Waldhuber M, Fischer A, Keller L et al (2017) Funnel-shaped surface depressions—indicator or accelerant of rapid glacier disintegration? A case study in the Tyrolean Alps. Geomorphology 287:58–72. Scholar
  58. Taylor JR (1997) An introduction to error analysis: the study of uncertainties in physical measurements. University Science Books, SausalitoGoogle Scholar
  59. Tschada H, Hofer B (1990) Total solids load from the catchment area of the Kaunertal hydroelectric power station: the results of 25 years of operation. IAHS Publication 194:121–128Google Scholar
  60. Vehling L (2016) Gravitative Massenbewegungen an alpinen Felshängen-Quantitative Bedeutung in der Sedimentkaskade proglazialer Geosysteme (Kaunertal, Tirol). Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen.
  61. Vehling L, Rohn J, Moser M (2016) Quantification of small magnitude rockfall processes at a proglacial high mountain site, Gepatsch glacier (Tyrol, Austria). Zeitschrift für Geomorphologie, Supplementary Issues 60:93–108CrossRefGoogle Scholar
  62. Vorndran G (1979) Geomorphodynamische Massenbilanzen (=Augsburger Geographische Hefte 1) University of Augsburg, AusgburgGoogle Scholar
  63. Warburton J (1990) An alpine proglacial fluvial sediment budget. Geogr Ann Ser A, Phys Geogr 72:261–272. Scholar
  64. Warburton J (1992) Observations of bed load transport and channel bed changes in a proglacial mountain stream. Arct Alp Res 195–203CrossRefGoogle Scholar
  65. Wichmann V (2006) Modellierung geomorphologischer Prozesse in einem alpinen Einzugsgebiet: Abgrenzung und Klassifizierung der Wirkungsräume von Sturzprozessen und Muren mit einem GIS (=Eichstätter Geographische Arbeiten 13). Profil-Verlag München/WienGoogle Scholar
  66. Wichmann V, Becht M (2005) Modeling of geomorphic processes in an alpine catchment. In: Atkinson PM, Foody GM, Darby SE, Wu F (eds) GeoDynamics. CRC Press, Boca Raton, S 151–167CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ludwig Hilger
    • 1
  • Jana-Marie Dusik
    • 2
  • Tobias Heckmann
    • 1
  • Florian Haas
    • 1
  • Philipp Glira
    • 3
  • Norbert Pfeifer
    • 3
  • Lucas Vehling
    • 4
  • Joachim Rohn
    • 4
  • David Morche
    • 6
    • 5
  • Henning Baewert
    • 7
  • Martin Stocker-Waldhuber
    • 8
    • 9
  • Michael Kuhn
    • 10
  • Michael Becht
    • 1
  1. 1.Chair of Physical GeographyCatholic University of Eichstätt-IngolstadtEichstättGermany
  2. 2.Bavarian State Agency for Environment (LfU)Geological SurveyHof/SaaleGermany
  3. 3.TU ViennaViennaAustria
  4. 4.University of Erlangen-NurembergErlangenGermany
  5. 5.University of Halle-WittenbergHalleGermany
  6. 6.Environmental Authority of Saalekreis DistrictMerseburgGermany
  7. 7.University of Halle-WittenbergHalleGermany
  8. 8.Institute for Interdisciplinary Mountain Research, Austrian Academy of SciencesInnsbruckAustria
  9. 9.Department of Geography, Physical GeographyCatholic University of Eichstätt-IngolstadtEichstätt-IngolstadtGermany
  10. 10.Institute of Atmospheric and Cryospheric Sciences, University of InnsbruckInnsbruckAustria

Personalised recommendations