Advertisement

Sediment Budgets in High-Mountain Areas: Review and Challenges

  • Ludwig HilgerEmail author
  • Achim A. Beylich
Chapter
Part of the Geography of the Physical Environment book series (GEOPHY)

Abstract

The changes in the sediment transport regimes of high-mountain areas as a consequence of global warming have received growing attention by geomorphologists, not only because these changes can imply a heightened threat to human infrastructure. While many studies dealing with high-mountain sediment transport processes (e.g., rockfall, debris flows, avalanches, stream transport) have focused on one process only, few studies have tried to establish a holistic view of the sediment transport in high-mountain catchments. This review chapter identifies the need for research in high-mountain sediment budgets, aims at providing an overview of studies that have contributed to this goal, and discusses the methodological state of the art in the different steps necessary for sediment budget construction. In addition, relevant research gaps will be identified, thereby showing potential for future research.

Keywords

Sediment budget Sediment cascades Geomorphic processes Quantification Morphological budget 

References

  1. Ballantyne CK (1995) Paraglacial debris-cone formation on recently deglaciated terrain, western Norway. Holocene 5:25–33.  https://doi.org/10.1177/095968369500500104CrossRefGoogle Scholar
  2. Ballantyne CK (2002a) A general model of paraglacial landscape response. Holocene 12:371–376.  https://doi.org/10.1191/0959683602hl553faCrossRefGoogle Scholar
  3. Ballantyne CK (2002b) Paraglacial geomorphology. Quatern Sci Rev 21:1935–2017.  https://doi.org/10.1016/s0277-3791(02)00005-7CrossRefGoogle Scholar
  4. Bartsch A, Gude M, Jonasson C, Scherer D (2002) Identification of geomorphic process units in Karkevagge, northern Sweden, by remote sensing and digital terrain analysis. Geogr Ann Ser A: Phys Geogr 84:171–178.  https://doi.org/10.1111/j.0435-3676.2002.00171.xCrossRefGoogle Scholar
  5. Becht M (1995) Untersuchungen zur aktuellen Reliefentwicklung in alpinen Einzugsgebieten. GEOBUCH, MünchenGoogle Scholar
  6. Becht M, Haas F, Heckmann T, Wichmann V (2005) Investigating sediment cascades using field measurements and spatial modelling. IAHS Publ 291:206–213Google Scholar
  7. Bennett GL, Molnar P, Eisenbeiss H, McArdell BW (2012) Erosional power in the Swiss Alps: characterization of slope failure in the Illgraben. Earth Surf Proc Land 37:1627–1640.  https://doi.org/10.1002/esp.3263CrossRefGoogle Scholar
  8. Bertoldi W, Zanoni L, Tubino M (2010) Assessment of morphological changes induced by flow and flood pulses in a gravel bed braided river: The Tagliamento River (Italy). Geomorphology 114:348–360.  https://doi.org/10.1016/j.geomorph.2009.07.017CrossRefGoogle Scholar
  9. Beylich A, Lamoureux S, Decaulne A (2011) Developing frameworks for studies on sedimentary fluxes and budgets in changing cold environments. Quaestiones Geographicae.  https://doi.org/10.2478/v10117-011-0001-5CrossRefGoogle Scholar
  10. Beylich AA (2000) Geomorphology, sediment budget, and relief development in Austdalur, Austfirdir, East Iceland. Arct Antarct Alp Res 32:466.  https://doi.org/10.2307/1552396CrossRefGoogle Scholar
  11. Beylich AA, Laute K (2015) Sediment sources, spatiotemporal variability and rates of fluvial bedload transport in glacier-connected steep mountain valleys in western Norway (Erdalen and Bødalen drainage basins). Geomorphology 228:552–567.  https://doi.org/10.1016/j.geomorph.2014.10.018CrossRefGoogle Scholar
  12. Beylich AA (2016) Controls and variability of solute and sedimentary fluxes in alpine/mountain environments. In: Beylich AA, Dixon JC, Zwolinski Z (eds) Source-to-sink fluxes in undisturbed cold environments. Cambridge University Press, Cambridge, pp 378–382CrossRefGoogle Scholar
  13. Beylich AA, Dixon JC, Zwoliński Z (eds) (2016) Source-to-sink fluxes in undisturbed cold environments. Cambridge University Press, CambridgeGoogle Scholar
  14. Beylich AA, Laute K, Storms JEA (2017) Contemporary suspended sediment dynamics within two partly glacierized mountain drainage basins in western Norway (Erdalen and Bødalen, inner Nordfjord). Geomorphology 287:126–143.  https://doi.org/10.1016/j.geomorph.2015.12.013CrossRefGoogle Scholar
  15. Bogen J, Xu M, Kennie P (2015) The impact of pro-glacial lakes on downstream sediment delivery in Norway. Earth Surf Proc Land 40:942–952.  https://doi.org/10.1002/esp.3669CrossRefGoogle Scholar
  16. Borselli L, Cassi P, Torri D (2008) Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. Catena 75:268–277.  https://doi.org/10.1016/j.catena.2008.07.006CrossRefGoogle Scholar
  17. Bosson J-B, Deline P, Bodin X et al (2015) The influence of ground ice distribution on geomorphic dynamics since the Little Ice Age in proglacial areas of two cirque glacier systems. Earth Surf Proc Land 40:666–680.  https://doi.org/10.1002/esp.3666CrossRefGoogle Scholar
  18. Brocklehurst SH, Whipple KX (2002) Glacial erosion and relief production in the Eastern Sierra Nevada, California. Geomorphology 42:1–24.  https://doi.org/10.1016/s0169-555x(01)00069-1CrossRefGoogle Scholar
  19. Burki V, Hansen L, Fredin O et al (2010) Little Ice Age advance and retreat sediment budgets for an outlet glacier in western Norway. Boreas.  https://doi.org/10.1111/j.1502-3885.2009.00133.xCrossRefGoogle Scholar
  20. Burt TP, Allison RJ (eds) (2010) Sediment cascades: an integrated approach. Hoboken, NJ, WileyGoogle Scholar
  21. Caine N (1974) The geomorphic processes of the alpine environment. Arctic and alpine environments Methuen, London, pp 721–748Google Scholar
  22. Caine SF (1989) Geomorphic coupling of hillslope and channel systems in two small mountain basins. Z fur Geomorphol 33:189–203Google Scholar
  23. Carrivick JL, Geilhausen M, Warburton J et al (2013) Contemporary geomorphological activity throughout the proglacial area of an alpine catchment. Geomorphology 188:83–95.  https://doi.org/10.1016/j.geomorph.2012.03.029CrossRefGoogle Scholar
  24. Carrivick JL, Rushmer EL (2009) Inter- and intra-catchment variations in proglacial geomorphology: an example from Franz Josef Glacier and Fox Glacier, New Zealand. Arct Antarct Alp Res 41:18–36.  https://doi.org/10.2307/40305853CrossRefGoogle Scholar
  25. Chiverrell RC, Foster GC, Marshall P, Harvey AM, Thomas GSP (2009) Coupling relationships: Hillslopefluvial linkages in the Hodder catchment, NW England. Geomorphol 109:222–235CrossRefGoogle Scholar
  26. Chorley RJ, Kennedy BA (1971) Physical geography: a systems approach. Prentice-Hall, LondonGoogle Scholar
  27. Cossart E, Fort M (2008) Sediment release and storage in early deglaciated areas: towards an application of the exhaustion model from the case of Massif des Écrins (French Alps) since the Little Ice Age. Nor Geogr Tidsskr Norw J Geogr 62:115–131.  https://doi.org/10.1080/00291950802095145CrossRefGoogle Scholar
  28. Curry AM, Cleasby V, Zukowskyj P (2006) Paraglacial response of steep, sediment-mantled slopes to post-‘Little Ice Age’ glacier recession in the central Swiss Alps. J Quat Sci 21:211–225.  https://doi.org/10.1002/jqs.954CrossRefGoogle Scholar
  29. Dietrich WE, Dunne T (1978) Sediment budget for a small catchment in mountainous terrain. Zeitschrift fuer Geomorphol N.F. Suppl 29:191–206Google Scholar
  30. Dietrich WE, Dunne T, Humphrey NF, Reid LM (1982) Construction of sediment budgets for drainage basins. In: Sediment budgets and routing in forested drainage basins: proceedings of the symposium, 31 May–1 June 1982, Corvallis, Oregon Gen Tech Rep PNW-141 Portland, Oregon: Pacific Northwest Forest and Range Experiment Station, Forest Service, US Department of Agriculture, pp 5–23Google Scholar
  31. Eckerstorfer M, Christiansen HH, Rubensdotter L, Vogel S (2012) The role of cornice fall avalanche sedimentation in the valley Longyeardalen, Central Svalbard. Cryosphere Discuss 6:4999–5036.  https://doi.org/10.5194/tcd-6-4999-2012CrossRefGoogle Scholar
  32. Embleton-Hamann C, Slaymaker O (2006) Classics revisited: Jäckli H 1957: Gegenwartsgeologie des Bündnerischen Rheingebietes. Ein Beitrag zur exogenen Dynamik Alpiner Gebirgslandschaften. Prog Phys Geogr 30:779–783.  https://doi.org/10.1177/0309133306071958CrossRefGoogle Scholar
  33. Engelen G, Venneker R (1988) ETA (Erosion Transport Accumulation) systems, their classification, mapping and managementGoogle Scholar
  34. Favey E, Pateraki M, Baltsavias EP, Bauder A, Bösch H (2000) Surface modelling for alpine glacier monitoring by Airborne laser scanning and digital photogrammetry. In: Digital photogrammetry.” international archives of photogrammetry and remote sensing, vol XXXIII, Part B3Google Scholar
  35. Fenn CR (1983) Proglacial Streamflow series: measurement, analysis and interpretation. Ph.D. thesis, University of SouthamptonGoogle Scholar
  36. Fuller IC (2014) Towards an understanding of catchment-scale sediment dynamics: cascades and connectivity in steepland systems. Int J Erosion Control Eng 7:1–8.  https://doi.org/10.13101/ijece.7
  37. Gärtner-Roer I, Nyenhuis M (2009) Volume estimation, kinematics and sediment transfer rates of active rock glaciers in the Turtmann Valley, Switzerland. In: Landform—structure, evolution, process control. Springer, Berlin, Heidelberg, pp 185–198CrossRefGoogle Scholar
  38. Gobiet A, Kotlarski S, Beniston M et al (2014) 21st century climate change in the European Alps—a review. Sci Total Environ 493:1138–1151.  https://doi.org/10.1016/j.scitotenv.2013.07.050CrossRefGoogle Scholar
  39. Götz J, Otto J-C, et al (2013) Postglacial sediment storage and rockwall retreat in a semi-closed inner-Alpine sedimentary basin (Gradenmoos, Hohe Tauern, Austria). Geografia Fisica e Dinamica Quaternaria, pp 63–80.  https://doi.org/10.4461/gfdq.2013.36.5
  40. Gurnell AM, Clark MJ (1987) Glacio-fluvial sediment transfer. WileyGoogle Scholar
  41. Haas F, Heckmann T, Hilger L, Becht M (2012) Quantification and modelling of debris flows in the proglacial area of the Gepatschferner, Austria, using ground-based LiDAR. In: IAHS-AISH publication. International Association of Hydrological Sciences 356, pp 293–302Google Scholar
  42. Haeberli W, Maisch M (2003) Die rezente Erwärmung der Atmosphäre—Folgen für die Schweizer Gletscher. Geographische Rundschau 55:4–12Google Scholar
  43. Hallet B, Hunter L, Bogen J (1996a) Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Global Planet Change 12:213–235.  https://doi.org/10.1016/0921-8181(95)00021-6CrossRefGoogle Scholar
  44. Hallet B, Hunter L, Bogen J (1996b) Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Global Planet Change 12:213–235.  https://doi.org/10.1016/0921-8181(95)00021-6CrossRefGoogle Scholar
  45. Hammer KM, Smith ND (2008) Sediment production and transport in a proglacial stream: Hilda Glacier, Alberta, Canada. Boreas 12:91–106.  https://doi.org/10.1111/j.1502-3885.1983.tb00441.xCrossRefGoogle Scholar
  46. Harbor J, Warburton J (1993) Relative rates of glacial and non glacial erosion in alpine environments. Arct Alp Res 25:1.  https://doi.org/10.2307/1551473CrossRefGoogle Scholar
  47. Hasholt B, Walling DE, Owens PN (2000) Sedimentation in arctic proglacial lakes: Mittivakkat Glacier, south–east Greenland. Hydrol Process 14:679–699. https://doi.org/10.1002/(sici)1099-1085(200003)14:4<679:aid-hyp966>3.0.co;2-eCrossRefGoogle Scholar
  48. Heckmann T, Hilger L, Vehling L, Becht M (2016) Integrating field measurements, a geomorphological map and stochastic modelling to estimate the spatially distributed rock fall sediment budget of the Upper Kaunertal, Austrian Central Alps. Geomorphology 260:16–31.  https://doi.org/10.1016/j.geomorph.2015.07.003CrossRefGoogle Scholar
  49. Heckmann T, Schwanghart W (2013a) Geomorphic coupling and sediment connectivity in an alpine catchment—exploring sediment cascades using graph theory. Geomorphology 182:89–103.  https://doi.org/10.1016/j.geomorph.2012.10.033CrossRefGoogle Scholar
  50. Heckmann T, Schwanghart W (2013b) Geomorphic coupling and sediment connectivity in an alpine catchment—exploring sediment cascades using graph theory. Geomorphology 182:89–103.  https://doi.org/10.1016/j.geomorph.2012.10.033CrossRefGoogle Scholar
  51. Heritage G, Hetherington D (2007) Towards a protocol for laser scanning in fluvial geomorphology. Earth Surf Proc Land 32:66–74.  https://doi.org/10.1002/esp.1375CrossRefGoogle Scholar
  52. Hicks DM, McSaveney MJ, Chinn TJH (1990) Sedimentation in Proglacial Ivory Lake, Southern Alps New Zealand. Arctic Alpine Res 22:26.  https://doi.org/10.2307/1551718CrossRefGoogle Scholar
  53. Hilger L (2017) Quantification and regionalization of geomorphic processes using spatial models and high-resolution topographic data: a sediment budget of the Upper Kauner Valley, Ötztal Alps. PhD thesis. Catholic University of Eichstätt-Ingolstadt, EichstättGoogle Scholar
  54. Hinchliffe S, Ballantyne CK (1999) Talus accumulation and Rockwall retreat, Trotternish, isle of Skye, Scotland. Scott Geogr J 115:53–70.  https://doi.org/10.1080/00369229918737057CrossRefGoogle Scholar
  55. Hinderer M (2001) Dénudation quaternaire récente dans les Alpes, remplissage des vallées et des lacs, charge solide des rivières actuelles. Geodin Acta 14:231–263.  https://doi.org/10.1016/s0985-3111(01)01070-1CrossRefGoogle Scholar
  56. Hinderer M (2012) From gullies to mountain belts: a review of sediment budgets at various scales. Sed Geol 280:21–59.  https://doi.org/10.1016/j.sedgeo.2012.03.009CrossRefGoogle Scholar
  57. Hinderer M, Kastowski M, Kamelger A et al (2013) River loads and modern denudation of the Alps—a review. Earth Sci Rev 118:11–44.  https://doi.org/10.1016/j.earscirev.2013.01.001CrossRefGoogle Scholar
  58. Hubbard B, Glasser NF (2005) Field techniques in glaciology and glacial geomorphology. Wiley, Chichester, West Sussex, England ; Hoboken, NJGoogle Scholar
  59. Irvine-Fynn TDL, Barrand NE, Porter PR et al (2011) Recent high-arctic glacial sediment redistribution: a process perspective using airborne lidar. Geomorphology 125:27–39.  https://doi.org/10.1016/j.geomorph.2010.08.012CrossRefGoogle Scholar
  60. Jaeckli H (1957) „Gegenwartsgeologie des Bündnerischen Rheingebietes“. Beiträge zu Geologischen Karte der Schweiz, Geotechnische Serie 36. Bern: Kümmerly & FreyGoogle Scholar
  61. Johnson RM, Warburton J (2002) Annual sediment budget of a UK mountain torrent. Geogr Ann, Ser A: Phys Geogr 84:73–88.  https://doi.org/10.1111/1468-0459.00162CrossRefGoogle Scholar
  62. Kirchner JW, Finkel RC, Riebe CS et al (2001) Mountain erosion over 10 year, 10 ky, and 10 my time scales. Geology 29:591–594CrossRefGoogle Scholar
  63. Knight J (2012) Uses and limitations of field mapping of lowland glaciated landscapes. In: Smith M, Paron P, Griffiths JS (eds) Geomorphological mapping. Methods and applications. Elsevier, Amsterdam [etc.], pp 533–550Google Scholar
  64. Knight J, Harrison S (2014) Mountain glacial and paraglacial environments under global climate change: lessons from the past, future directions and policy implications. Geogr Ann: Ser A, Phys Geogr 96:245–264.  https://doi.org/10.1111/geoa.12051CrossRefGoogle Scholar
  65. Körner C (1998) World wide positions of alpine treelines and their causes. In: The impacts of climate variability on forests, pp 221–229Google Scholar
  66. Kraus K, Pfeifer N (1998) Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J Photogrammetry Remote Sens 53:193–203.  https://doi.org/10.1016/s0924-2716(98)00009-4CrossRefGoogle Scholar
  67. Krautblatter M (2009) Detection and quantification of permafrost change in alpine rock walls and implications for rock instability. PhD thesis, University of Bonn, BonnGoogle Scholar
  68. Lane SN, Bakker M, Gabbud C et al (2017) Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession. Geomorphology 277:210–227.  https://doi.org/10.1016/j.geomorph.2016.02.015CrossRefGoogle Scholar
  69. Laute K, Beylich AA (2016) Sediment delivery from headwater slope systems and relief development in steep mountain valleys in western Norway. In: Beylich AA, Dixon JC, Zwolinski Z (eds) Source-to-sink fluxes in undisturbed cold environments. Cambridge University Press, Cambridge, pp 293–312CrossRefGoogle Scholar
  70. Laute K, Beylich AA (2014) Environmental controls, rates and mass transfers of contemporary hillslope processes in the headwaters of two glacier-connected drainage basins in western Norway. Geomorphology 216:93–113.  https://doi.org/10.1016/j.geomorph.2014.03.021CrossRefGoogle Scholar
  71. Liermann S, Beylich AA, van Welden A (2012) Contemporary suspended sediment transfer and accumulation processes in the small proglacial Sætrevatnet sub-catchment, Bødalen, western Norway. Geomorphology 167–168:91–101.  https://doi.org/10.1016/j.geomorph.2012.03.035CrossRefGoogle Scholar
  72. Loso MG, Anderson RS, Anderson SP (2004) Post-Little Ice Age record of coarse and fine clastic sedimentation in an Alaskan proglacial lake. Geology 32:1065.  https://doi.org/10.1130/g20839.1CrossRefGoogle Scholar
  73. Lu H, Moran CJ, Sivapalan M (2005) A theoretical exploration of catchment-scale sediment delivery. Water Resour Res.  https://doi.org/10.1029/2005wr004018CrossRefGoogle Scholar
  74. Maizels JK (1979) Proglacial aggradation and changes in braided channel patterns during a period of glacier advance: an alpine example. Geogr Ann Ser A, Phys Geogr 61:87.  https://doi.org/10.2307/520517CrossRefGoogle Scholar
  75. Marchenko SS, Gorbunov AP, Romanovsky VE (2007) Permafrost warming in the Tien Shan mountains, Central Asia. Global Planet Change 56:311–327.  https://doi.org/10.1016/j.gloplacha.2006.07.023CrossRefGoogle Scholar
  76. Marren PM (2005) Magnitude and frequency in proglacial rivers: a geomorphological and sedimentological perspective. Earth Sci Rev 70:203–251.  https://doi.org/10.1016/j.earscirev.2004.12.002CrossRefGoogle Scholar
  77. Matsuoka N (2008) Frost weathering and rockwall erosion in the southeastern Swiss Alps: long-term (1994–2006) observations. Geomorphology 99:353–368.  https://doi.org/10.1016/j.geomorph.2007.11.013CrossRefGoogle Scholar
  78. Matthews JA, Shakesby RA, Berrisford MS, McEwen LJ (1998) Periglacial patterned ground on the Styggedalsbreen glacier foreland, Jotunheimen, southern Norway: micro-topographic, paraglacial and geoecological controls. Permafrost Periglac Process 9:147–166. https://doi.org/10.1002/(sici)1099-1530(199804/06)9:2<147:aid-ppp278>3.0.co;2-9CrossRefGoogle Scholar
  79. Messenzehl K, Hoffmann T, Dikau R (2014) Sediment connectivity in the high-alpine valley of Val Müschauns, Swiss National Park—linking geomorphic field mapping with geomorphometric modelling. Geomorphology 221:215–229.  https://doi.org/10.1016/j.geomorph.2014.05.033CrossRefGoogle Scholar
  80. Milan DJ, Heritage GL, Hetherington D (2007) Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river. Earth Surf Proc Land 32:1657–1674.  https://doi.org/10.1002/esp.1592CrossRefGoogle Scholar
  81. Moore JR, Egloff J, Nagelisen J et al (2013) Sediment transport and bedrock erosion by wet snow avalanches in the Guggigraben, Matter Valley, Switzerland. Arct Antarct Alp Res 45:350–362.  https://doi.org/10.1657/1938-4246-45.3.350CrossRefGoogle Scholar
  82. Müller B (1999) Paraglacial sedimentation and denudation processes in an Alpine valley of Switzerland. An approach to the quantification of sediment budgets. Geodin Acta 12:291–301.  https://doi.org/10.1016/s0985-3111(00)87046-1CrossRefGoogle Scholar
  83. Nicolussi K, Kaufmann M, Patzelt G et al (2005) Holocene tree-line variability in the Kauner Valley, Central Eastern Alps, indicated by dendrochronological analysis of living trees and subfossil logs. Veget Hist Archaeobot 14:221–234.  https://doi.org/10.1007/s00334-005-0013-yCrossRefGoogle Scholar
  84. O’Farrell CR, Heimsath AM, Lawson DE et al (2009) Quantifying periglacial erosion: insights on a glacial sediment budget, Matanuska Glacier, Alaska. Earth Surf Proc Land 34:2008–2022.  https://doi.org/10.1002/esp.1885CrossRefGoogle Scholar
  85. Orwin JF, Lamoureux SF, Warburton J, Beylich A (2010) A framework for characterizing fluvial sediment fluxes from source to sink in cold environments. Geogr Ann: Ser A, Phys Geogr 92:155–176CrossRefGoogle Scholar
  86. Otto J, Goetz J, Schrott L (2008) Sediment storage in Alpine sedimentary systems–quantification and scaling issues. IAHS Publ 325:258Google Scholar
  87. Otto J-C (2006) Paraglacial sediment storage quantification in the Turtmann Valley, Swiss Alps. PhD Thesis, University of BonnGoogle Scholar
  88. Otto J-C, Schrott L (2010) Quantifizierung von rezenten und postglazialen Sedimentspeichern und Sedimentflüssen-Konzeptionelle Ansätze und aktuelle Studien aus den Ostalpen. Salzburger Geogr Arbeiten 46:1–13Google Scholar
  89. Otto J-C, Schrott L, Jaboyedoff M, Dikau R (2009) Quantifying sediment storage in a high alpine valley (Turtmanntal, Switzerland). Earth Surf Proc Land 34:1726–1742.  https://doi.org/10.1002/esp.1856CrossRefGoogle Scholar
  90. Parsons AJ (2012) How useful are catchment sediment budgets? Prog Phys Geogr 36:60–71.  https://doi.org/10.1177/0309133311424591CrossRefGoogle Scholar
  91. Pavlova I, Jomelli V, Brunstein D, Grancher D, Martin E, Déqué M (2014) Debris flow activity related to recent climate conditions in the French Alps: a regional investigation. Geomorphology 219:248–259.  https://doi.org/10.1016/j.geomorph.2014.04.025CrossRefGoogle Scholar
  92. Pepin N, Bradley RS, Diaz HF et al (2015) Elevation-dependent warming in mountain regions of the world. Nature Clim Change 5:424–430.  https://doi.org/10.1038/nclimate2563CrossRefGoogle Scholar
  93. Phillips JD (1986) Sediment storage, sediment yield, and time scales in landscape denudation studies. Geogr Anal 18:161–167.  https://doi.org/10.1111/j.1538-4632.1986.tb00089.xCrossRefGoogle Scholar
  94. Rapp A (1960) Recent development of mountain slopes in Kärkevagge and surroundings Northern Scandinavia. Geogr Ann 42:65.  https://doi.org/10.2307/520126CrossRefGoogle Scholar
  95. Rascher E, Sass O (2016) Constructing a sediment budget for the Johnsbach, Styria—adding up numbers and drawing arrows? Geophys Res Abstr 18Google Scholar
  96. Sanders JW, Cuffey KM, MacGregor KR, Collins BD (2013) The sediment budget of an alpine cirque. Geol Soc Am Bull 125:229–248.  https://doi.org/10.1130/b30688.1CrossRefGoogle Scholar
  97. Sass O, Wollny K (2001) Investigations regarding Alpine talus slopes using ground-penetrating radar (GPR) in the Bavarian Alps, Germany. Earth Surf Proc Land 26:1071–1086.  https://doi.org/10.1002/esp.254CrossRefGoogle Scholar
  98. Schiefer E, Gilbert R (2007) Reconstructing morphometric change in a proglacial landscape using historical aerial photography and automated DEM generation. Geomorphology 88:167–178.  https://doi.org/10.1016/j.geomorph.2006.11.003CrossRefGoogle Scholar
  99. Schiefer E, Gilbert R (2008) Proglacial sediment trapping in recently formed Silt Lake, upper Lillooet Valley, Coast Mountains, British Columbia. Earth Surf Proc Land 33:1542–1556.  https://doi.org/10.1002/esp.1625CrossRefGoogle Scholar
  100. Schneevoigt NJ, van der Linden S, Thamm H-P, Schrott L (2008) Detecting Alpine landforms from remotely sensed imagery. a pilot study in the Bavarian Alps. Geomorphology 93:104–119.  https://doi.org/10.1016/j.geomorph.2006.12.034CrossRefGoogle Scholar
  101. Schrott L, Götz J, Geilhausen M, Morche D (2006) Spatial and temporal variability of sediment transfer and storage in an Alpine basin (Reintal valley, Bavarian Alps, Gemany). Geogr Helv 61:191–200.  https://doi.org/10.5194/gh-61-191-2006CrossRefGoogle Scholar
  102. Schrott L, Hufschmidt G, Hankammer M et al (2003) Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany. Geomorphology 55:45–63.  https://doi.org/10.1016/s0169-555x(03)00131-4CrossRefGoogle Scholar
  103. Slaymaker O (1991) Mountain geomorphology: a theoretical framework for measurement programmes. Catena 18:427–437.  https://doi.org/10.1016/0341-8162(91)90047-2CrossRefGoogle Scholar
  104. Slaymaker O (1993) The sediment budget of the Lillooet River Basin, British Columbia. Phys Geogr 14:304–320.  https://doi.org/10.1080/02723646.1993.10642482CrossRefGoogle Scholar
  105. Slaymaker O (2003) The sediment budget as conceptual framework and management tool. Hydrobiologia 494:71–82.  https://doi.org/10.1023/a:1025437509525CrossRefGoogle Scholar
  106. Slaymaker O (2008) Sediment budget and sediment flux studies under accelerating global change in cold environments. Z Geomorphol Supplementary Issues 52:123–148.  https://doi.org/10.1127/0372-8854/2008/0052s1-0123CrossRefGoogle Scholar
  107. Slaymaker O (2009) Proglacial, periglacial or paraglacial? In: Knight J, Harrison S (eds) Periglacial and Paraglacial processes and environments. The Geological Society Publishing House, London, pp 71–84CrossRefGoogle Scholar
  108. Slaymaker O (2011) Criteria to distinguish between periglacial, proglacial and paraglacial environments. Quaest Geogr 30:85–94CrossRefGoogle Scholar
  109. Spotila JA, Buscher JT, Meigs AJ, Reiners PW (2004) Long-term glacial erosion of active mountain belts: example of the Chugach–St. Elias Range, Alaska. Geology 32:501.  https://doi.org/10.1130/g20343.1CrossRefGoogle Scholar
  110. Staines KE, Carrivick JL, Tweed FS et al (2015) A multi-dimensional analysis of pro-glacial landscape change at Sólheimajökull, southern Iceland. Earth Surf Proc Land 40:809–822CrossRefGoogle Scholar
  111. Swanson FJ, Janda RJ, Dunne T, Swanston DN (1982) Workshop on sediment budgets and routing in forested drainage basins: proceedings. U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station, Portland, ORGoogle Scholar
  112. Thiel M (2013) Quantifizierung der Konnektivität von Sedimentkaskaden in alpinen Geosystemen. PhD thesis, University of Eichstaett-IngolstadtGoogle Scholar
  113. Tunnicliffe J, Church M, Clague JJ, Feathers JK (2012) Postglacial sediment budget of Chilliwack Valley, British Columbia. Earth Surf Proc Land 37:1243–1262.  https://doi.org/10.1002/esp.3229CrossRefGoogle Scholar
  114. Walling DE (1983) The sediment delivery problem. J Hydrol 65:209–237.  https://doi.org/10.1016/0022-1694(83)90217-2CrossRefGoogle Scholar
  115. Warburton J (1990) An Alpine proglacial fluvial sediment budget. Geogr Ann Ser A, Phys Geogr 72:261–272.  https://doi.org/10.1080/04353676.1990.11880322CrossRefGoogle Scholar
  116. Warburton J (2009) Mountain environments. In: Perry C, Taylor K (Hrsg) Environmental sedimentology. Wiley, New York, NYGoogle Scholar
  117. Wichmann V (2009) A new modelling approach to delineate the spatial extent of alpine sediment cascades: GIS and SDA applications in geomorphology. Geomorphology 111:70–78CrossRefGoogle Scholar
  118. Wohl E (2000) Mountain rivers. Water resources monograph, vol 14, p 320. American Geophysical Union, Washington DCGoogle Scholar
  119. Zemp M, Frey H, Gärtner-Roer I et al (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61:745–762.  https://doi.org/10.3189/2015jog15j017CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Chair of Physical GeographyCatholic University of Eichstätt-IngolstadtEichstättGermany
  2. 2.Geomorphological Field Laboratory (GFL)Trondheim—SelbuSelbustrandNorway

Personalised recommendations