Advertisement

Slope Wash, Gully Erosion and Debris Flows on Lateral Moraines in the Upper Kaunertal, Austria

  • Jana-Marie DusikEmail author
  • Fabian Neugirg
  • Florian Haas
Chapter
Part of the Geography of the Physical Environment book series (GEOPHY)

Abstract

The science on high-mountain proglacial systems is a rather young field of study, but has gained importance since a few years ago. In this context, we investigated a part of the lateral Little Ice Age (LIA) moraine that was built up by the second longest glacier of the Eastern Alps. The Gepatschferner glacier in the Upper Kaunertal, Central Austrian Alps, created up to 150-m-high moraine slopes during its LIA advance that are now prone to paraglacial reworking. To analyse the degree of reworking and to identify the driving forces behind the slope development with both their spatial and temporal variations, we conducted several case studies, mainly based on data acquired by remote sensing techniques (multitemporal TLS and aerial photographs) and their derivatives (DEMs, DoD, orthophotos). First, a medium-term (5 years) overall balance of erosion and deposition of the studied slope is calculated. Second, seasonal variations of the process dynamics are uncovered based on short-term TLS measurements within c. one year. Third, the sediment contributing area (SCA) is delineated to estimate fluvial reworking. Fourth, following paraglacial adjustment studies by Curry et al. (2006), we measured and analysed gully development with time since deglaciation. The case studies lead to the conclusions that paraglacial adjustment of the study slope is still in progress. Extreme events in summer play a dominant role for morphodynamics, followed by processes during winter, whereas springtime offers important preparatory conditions for sediment transport. Fluvial transport is considered to have minor effects on the moraine development compared to gravitational processes. And last but not least, the development of gullies depends more on natural boundary conditions than on time since deglaciation.

Keywords

PROSA project Lateral moraine Gullying Morphological budget Sediment contributing area Seasonal morphodynamics 

References

  1. Ballantyne CK, Benn DI (1994) Paraglacial slope adjustment and resedimentation following recent glacier retreat, Faabergstolsdalen, Norway. Arct Antarct Alp Res 26:255–269CrossRefGoogle Scholar
  2. Ballantyne CK, Benn DI (1996) Paraglacial slope adjustment during recent deglaciation and its implications for slope evolution in formerly glaciated environments. Brooks S, Anderson MG (Eds.) Advances in Hillslope Processes, pp 1173–1195. Wiley, ChichesterGoogle Scholar
  3. Bechet J, Duc J, Loye A, Jaboyedoff M, Mathys N, Malet J-P, Klotz S, Le Bouteiller C, Rudaz B, Travelletti J (2016) Detection of seasonal cycles of erosion processes in a black marl gully from a time series of high-resolution digital elevation models (DEMs). Earth Surf Dynam 4:781–798.  https://doi.org/10.5194/esurf-4-781-2016CrossRefGoogle Scholar
  4. Becht M (1995) Untersuchungen zur aktuellen Reliefentwicklung in alpinen Einzugsgebieten: Mit 40 Tabellen. Münchener Universitätsschriften, vol 47. Geobuch-Verl., MünchenGoogle Scholar
  5. Cossart E, Braucher R, Fort M, Bourlès D, Carcaillet J (2008) Slope instability in relation to glacial debuttressing in alpine areas (Upper Durance catchment, southeastern France): evidence from field data and 10Be cosmic ray exposure ages. Geomorphology 95:3–26.  https://doi.org/10.1016/j.geomorph.2006.12.022CrossRefGoogle Scholar
  6. Curry AM (1999) Paraglacial modification of slope form. Earth Surf Proc Land 24:1213–1228CrossRefGoogle Scholar
  7. Curry AM, Cleasby V, Zukowskyj P (2006) Paraglacial response of steep, sediment-mantled slopes to post-Little Ice Age glacier recession in the central Swiss Alps. J Quat Sci 21:211–225.  https://doi.org/10.1002/jqs.954CrossRefGoogle Scholar
  8. Groß G (1987) Der Flächenverlust der Gletscher in Österreich 1850-1920-1969. Z Gletscherk Glazialgeol 23:131–141Google Scholar
  9. Gude M, Scherer D (1995) Snowmelt and slush torrents: preliminary report from a field campaign in Karkevagge, Swedish Lappland. Geogr Annaler A 77:199–206.  https://doi.org/10.2307/521329CrossRefGoogle Scholar
  10. Haas F (2008) Fluviale Hangprozesse in Alpinen Einzugsgebieten der Nördlichen Kalkalpen: Quantifizierung und Modellierungsansätze. DissertationGoogle Scholar
  11. Haas F, Heckmann T, Becht M, Cyffka B (2011a) Ground-based laserscanning—a new method for measuring fluvial erosion on steep slopes. In: Hafeez MM (ed) GRACE, remote sensing and ground-based methods in multi-scale hydrology: Proceedings of the symposium JHS01 [entitled: GRACE, remote sensing and ground-based methods in multi-scale hydrology] held during the IUGG GA in Melbourne (28 June–7 July 2011). IAHS Publ, Wallingford, pp 163–168Google Scholar
  12. Haas F, Heckmann T, Wichmann V, Becht M (2011b) Quantification and modeling of fluvial bedload discharge from hillslope channels in two alpine catchments (Bavarian Alps, Germany). Z Geomorph NF 55(Suppl):147–168CrossRefGoogle Scholar
  13. Haas F, Heckmann T, Hilger L, Becht M (2012) Quantification and modelling of debris flows in the proglacial area of the Gepatschferner, Austria, using ground-based LiDAR. In: Collins A (ed) Erosion and sediment yields in the changing environment: proceedings of an IAHS International Commission on continental erosion symposium held at the institute of mountain hazards and environment, CAS-Chengdu, China, 11–15 Oct 2012. IAHS Press, Wallingford, pp 293–302Google Scholar
  14. Hagg W, Becht M (2000) Einflüsse von Niederschlag und Substrat auf die Auslösung von Hangmuren in Beispielgebieten der Ostalpen. In: Becht M, Schmidt K-H (eds) Angewandte und vernetzte geomorphologische Prozeßforschung, vol 123. Borntraeger, Berlin, pp 79–92Google Scholar
  15. Hartl L (2010) The Gepatschferner from 1850–2006: changes in length, area and volume in relation to climate. University of InnsbruckGoogle Scholar
  16. Holm K, Bovis M, Jakob M (2004) The landslide response of alpine basins to post-Little Ice Age glacial thinning and retreat in southwestern British Columbia. Geomorphology 57:201–216CrossRefGoogle Scholar
  17. Hugenholtz CH, Moorman B, Barlow J, Wainstein P (2008) Large-scale moraine deformation at the Athabasca Glacier, Jasper National Park, Alberta, Canada. Landslides 5:251–260.  https://doi.org/10.1007/s10346-008-0116-5CrossRefGoogle Scholar
  18. Carrivick JL, Heckmann T (2017) Short-term geomorphological evolution of proglacial systems. Geomorphology 287:3–28CrossRefGoogle Scholar
  19. Kellerer-Pirklbauer A, Proske H, Strasser V (2010) Paraglacial slope adjustment since the end of the last glacial maximum and its long-lasting effects on secondary mass wasting processes: Hauser Kaibling, Austria. Geomorphology 120:65–76.  https://doi.org/10.1016/j.geomorph.2009.09.016CrossRefGoogle Scholar
  20. Klok E, Oerlemans J (2003) Deriving historical equilibrium-line altitudes from a glacier length record by linear inverse modelling. Holocene 13:343–351.  https://doi.org/10.1191/0959683603hl627rpCrossRefGoogle Scholar
  21. Lambrecht A, Kuhn M (2007) Glacier changes in the Austrian Alps during the last three decades derived from the new Austrian glacier inventory. Ann Glaciol 46:177–184.  https://doi.org/10.3189/172756407782871341CrossRefGoogle Scholar
  22. Lane SN, Westaway RM, Murray Hicks D (2003) Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surf Proc Land 28:249–271.  https://doi.org/10.1002/esp.483CrossRefGoogle Scholar
  23. Matthews JA, Shakesby RA (2004) A twentieth-century neoparaglacial rock topple on a glacier foreland, Ötztal Alps, Austria. Holocene 14:454–458.  https://doi.org/10.1191/0959683604hl706rrCrossRefGoogle Scholar
  24. McColl ST (2012) Paraglacial rock-slope stability. Geomorphology 153–154:1–16.  https://doi.org/10.1016/j.geomorph.2012.02.015CrossRefGoogle Scholar
  25. Morche D, Haas F, Baewert H, Heckmann T, Schmidt K-H, Becht M (2012) Sediment transport in the proglacial Fagge River (Kaunertal/Austria). In: Collins A (ed) Erosion and sediment yields in the changing environment: proceedings of an IAHS International Commission on continental erosion symposium held at the institute of mountain hazards and environment, CAS-Chengdu, China, 11–15 Oct 2012. IAHS Press, Wallingford, pp 72–80Google Scholar
  26. Neugirg F (2016) Quantifizierung, Analyse und Modellierung von Erosionsprozessen auf Steilhängen in unterschiedlichen Klimaten durch hochaufgelöste Geländemodellen. Dissertation, Katholische Universität Eichstätt-IngolstadtGoogle Scholar
  27. Neugirg F, Kaiser A, Schindewolf M, Becht M, Schmidt J, Haas F (2015) Monitoring and modelling slope dynamics in an Alpine watershed—a combined approach of soil science, remote sensing and geomorphology. Proc IAHS 371:181–187.  https://doi.org/10.5194/piahs-371-181-2015CrossRefGoogle Scholar
  28. Neugirg F, Stark M, Kaiser A, Vlacilova M, Della Seta M, Vergari F, Schmidt J, Becht M, Haas F (2016a) Erosion processes in calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys. Geomorphology 269:8–22.  https://doi.org/10.1016/j.geomorph.2016.06.027CrossRefGoogle Scholar
  29. Neugirg F, Kaiser A, Huber A, Heckmann T, Schindewolf M, Schmidt J, Becht M, Haas F (2016b) Using terrestrial LiDAR data to analyse morphodynamics on steep unvegetated slopes driven by different geomorphic processes. CATENA 142:269–280.  https://doi.org/10.1016/j.catena.2016.03.021CrossRefGoogle Scholar
  30. Oostwoud Wijdenes DJ, Ergenzinger P (1998) Erosion and sediment transport on steep marly hillslopes, Draix, Haute-Provence, France: an experimental field study. CATENA 33:179–200.  https://doi.org/10.1016/S0341-8162(98)00076-9CrossRefGoogle Scholar
  31. Patzelt G (1980) The Austrian glacier inventory: status and first results. IAHS Publication 126Google Scholar
  32. Pelletier JD, Orem CA (2014) How do sediment yields from post-wildfire debris-laden flows depend on terrain slope, soil burn severity class, and drainage basin area?: Insights from airborne-LiDAR change detection. Earth Surf Proc Land 39:1822–1832.  https://doi.org/10.1002/esp.3570CrossRefGoogle Scholar
  33. Schauer T (1999) Beispiele von Erosionsprozessen in Zusammenhang mit den Standortfaktoren Nutzung und Vegetation im Bayerischen Alpenraum. Relief Boden Pal’aoklima 14:117–128Google Scholar
  34. Schiefer E, Gilbert R (2007) Reconstructing morphometric change in a proglacial landscape using historical aerial photography and automated DEM generation. Geomorphology 88:167–178CrossRefGoogle Scholar
  35. Schindewolf M, Kaiser A, Neugirg F, Richter C, Haas F, Schmidt J (2016) Seasonal erosion patterns under alpine conditions: benefits and challenges of a novel approach in physically based soil erosion modeling. Zeit fur Geo 60(Supp):109–123.  https://doi.org/10.1127/zfg_suppl/2015/s-00185CrossRefGoogle Scholar
  36. Wetzel K-F (1992) Abtragsprozesse an Hängen und Feststoffführung der Gewässer. Dargestelllt am Beispiel der pleistozänen Lockergesteine des Lainbachgebietes (Benediktbeuern/ Obb.). Münchener Geographische Abhandlungen B, vol 17. Geobuch-Verlag, MünchenGoogle Scholar
  37. Zimmermann M (1990) Debris flows 1987 in Switzerland: geomorphological and meteorological aspects. In: Sinniger RO, Monbaron M (eds) Hydrology in mountainous regions II—artificial reservoirs; water and slopes, vol 194, pp 387–393Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jana-Marie Dusik
    • 1
    Email author
  • Fabian Neugirg
    • 2
  • Florian Haas
    • 3
  1. 1.Bavarian State Office for Environment (LfU)Geological SurveyHof/SaaleGermany
  2. 2.Municipal administrationStrömsundSweden
  3. 3.Catholic University of Eichstätt-IngolstadtEichstättGermany

Personalised recommendations