Advertisement

DNA Profiling Methods and Tools: A Review

Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 224)

Abstract

DNA typing or profiling is a widely used practice in various forensic laboratories, used, for example, in sexual assault cases when the source of DNA mixture can combine different individuals such as the victim, the criminal, and the victim’s partner. DNA typing is considered one of the hardest problem in the forensic science domain, and it is an active area of research. The computational complexity of DNA typing increases significantly with the number of unknowns in the mixture. Different methods have been developed and implemented to address this problem. However, its computational complexity has been the major deterring factor holding its advancements and applications. In this paper, we review DNA profiling methods and tools with a particular focus on their computational performance and accuracy. Faster interpretations of DNA mixtures with a large number of unknowns and higher accuracies are expected to open up new frontiers for this area.

Keywords

DNA profiling Bioinformatics Forensic science Likelihood computations High-performance computing 

Notes

Acknowledgments

The work carried out in this paper is supported by the HPC Center at the King Abdulaziz University.

References

  1. 1.
    The American Heritage Medical Dictionary. Houghton Mifflin Co., Boston (2007)Google Scholar
  2. 2.
    Butler, J.M.: Fundamentals of Forensic DNA Typing. Academic Press/Elsevier (2010)CrossRefGoogle Scholar
  3. 3.
    Swaminathan, H., Grgicak, C.M., Medard, M., Lun, D.S.: NOCIt: a computational method to infer the number of contributors to DNA samples analyzed by STR genotyping. Forensic Sci. Int. Genet. 16, 172–180 (2015)CrossRefGoogle Scholar
  4. 4.
    Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.: Enabling smarter societies through mobile big data fogs and clouds. Procedia Comput. Sci. 109, 1128–1133 (2017)CrossRefGoogle Scholar
  5. 5.
    Alam, F., Mehmood, R., Katib, I., Albogami, N.N., Albeshri, A.: Data fusion and IoT for smart ubiquitous environments: a survey. IEEE Access. 5, 9533–9554 (2017)CrossRefGoogle Scholar
  6. 6.
    Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: UTiLearn: a personalised ubiquitous teaching and learning system for smart societies. IEEE Access. 5, 2615–2635 (2017)CrossRefGoogle Scholar
  7. 7.
    Butler, J.M.: The future of forensic DNA analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 577–579 (2015)CrossRefGoogle Scholar
  8. 8.
    Paoletti, D.R., Krane, D.E., Raymer, M.L., Doom, T.E.: Inferring the number of contributors to mixed DNA profiles. IEEE/ACM Trans. Comput. Biol. Bioinforma. 9, 113–122 (2012)CrossRefGoogle Scholar
  9. 9.
    Perez, J., Mitchell, A.A., Ducasse, N., Tamariz, J., Caragine, T.: Estimating the number of contributors to two-, three-, and four-person mixtures containing DNA in high template and low template amounts. Croat. Med. J. 52, 314–326 (2011)CrossRefGoogle Scholar
  10. 10.
    Gill, P., Haned, H.: A new methodological framework to interpret complex DNA profiles using likelihood ratios. Forensic Sci. Int. Genet. 7, 251–263 (2013)CrossRefGoogle Scholar
  11. 11.
    Weedn, V.W., Foran, D.R.: Forensic DNA typing. In: Leonard, D.G.B. (ed.) Molecular Pathology in Clinical Practice, pp. 793–810. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-19674-9_54CrossRefGoogle Scholar
  12. 12.
    Monich, U.J., Grgicak, C., Cadambe, V., Wu, J.Y., Wellner, G., Duffy, K., Medard, M.: A signal model for forensic DNA mixtures. In: 2014 48th Asilomar Conference on Signals, Systems and Computers, pp. 429–433. IEEE (2014)Google Scholar
  13. 13.
    Inman, K., Rudin, N., Cheng, K., Robinson, C., Kirschner, A., Inman-Semerau, L., Lohmueller, K.E.: Lab retriever: a software tool for calculating likelihood ratios incorporating a probability of drop-out for forensic DNA profiles. BMC Bioinf. 16, 298 (2015)CrossRefGoogle Scholar
  14. 14.
    Butler, J.M.: Advanced Topics in Forensic DNA Typing: Interpretation. Academic Press (2014)Google Scholar
  15. 15.
    Bille, T., Bright, J.-A., Buckleton, J.: Application of random match probability calculations to mixed STR profiles. J. Forensic Sci. 58, 474–485 (2013)CrossRefGoogle Scholar
  16. 16.
    Garofano, P., Caneparo, D., D’Amico, G., Vincenti, M., Alladio, E.: An alternative application of the consensus method to DNA typing interpretation for Low Template-DNA mixtures. Forensic Sci. Int. Genet. Suppl. Ser. 5, e422–e424 (2015)CrossRefGoogle Scholar
  17. 17.
    Kelly, H., Bright, J.-A., Buckleton, J.S., Curran, J.M.: A comparison of statistical models for the analysis of complex forensic DNA profiles. Sci. Justice 54, 66–70 (2014)CrossRefGoogle Scholar
  18. 18.
    Bleka, Ø., Storvik, G., Gill, P.: EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts. Forensic Sci. Int. Genet. 21, 35–44 (2016)CrossRefGoogle Scholar
  19. 19.
    Perlin, M.W., Dormer, K., Hornyak, J., Schiermeier-Wood, L., Greenspoon, S.: TrueAllele casework on Virginia DNA mixture evidence: computer and manual interpretation in 72 reported criminal cases. PLoS ONE 9, e92837 (2014)CrossRefGoogle Scholar
  20. 20.
    Gill, P., Haned, H., Eduardoff, M., Santos, C., Phillips, C., Parson, W.: The open-source software LRmix can be used to analyse SNP mixtures. Forensic Sci. Int. Genet. Suppl., Ser (2015)Google Scholar
  21. 21.
    Swaminathan, H., Garg, A., Grgicak, C.M., Medard, M., Lun, D.S.: CEESIt: A computational tool for the interpretation of STR mixtures. Forensic Sci. Int. Genet. 22, 149–160 (2016)CrossRefGoogle Scholar
  22. 22.
    Balding, D.J., Steele, C.: The likeLTD software: an illustrative analysis, explanation of the model, results of performance tests and version history. UCL Genet. Inst. 1, 1–49 (2014)Google Scholar
  23. 23.
    Moretti, T.R., Just, R.S., Kehl, S.C., Willis, L.E., Buckleton, J.S., Bright, J.-A., Taylor, D.A., Onorato, A.J.: Internal validation of STRmixTM for the interpretation of single source and mixed DNA profiles. Forensic Sci. Int. Genet. 29, 126–144 (2017)CrossRefGoogle Scholar
  24. 24.
    Taylor, D., Bright, J.-A., Buckleton, J.: Interpreting forensic DNA profiling evidence without specifying the number of contributors. Forensic Sci. Int. Genet. 13, 269–280 (2014)CrossRefGoogle Scholar
  25. 25.
    Russell, D., Christensen, W., Lindsey, T.: A simple unconstrained semi-continuous model for calculating likelihood ratios for complex DNA mixtures. Forensic Sci. Int. Genet. Suppl. Ser. 5, e37–e38 (2015)CrossRefGoogle Scholar
  26. 26.
    Paoletti, D.R., Doom, T.E., Krane, C.M., Raymer, M.L., Krane, D.E.: Empirical analysis of the STR profiles resulting from conceptual mixtures. J. Forensic Sci. 50, JFS2004475-6 (2005)CrossRefGoogle Scholar
  27. 27.
    Biedermann, A., Bozza, S., Konis, K., Taroni, F.: Inference about the number of contributors to a DNA mixture: comparative analyses of a Bayesian network approach and the maximum allele count method. Forensic Sci. Int. Genet. 6, 689–696 (2012)CrossRefGoogle Scholar
  28. 28.
    Haned, H., Pène, L., Sauvage, F., Pontier, D.: The predictive value of the maximum likelihood estimator of the number of contributors to a DNA mixture. Forensic Sci. Int. Genet. 5, 281–284 (2011)CrossRefGoogle Scholar
  29. 29.
    Haned, H., Pène, L., Lobry, J.R., Dufour, A.B., Pontier, D.: Estimating the number of contributors to forensic DNA mixtures: does maximum likelihood perform better than maximum allele count? J. Forensic Sci. 56, 23–28 (2011)CrossRefGoogle Scholar
  30. 30.
    Haned, H., Benschop, C.C.G., Gill, P.D., Sijen, T.: Complex DNA mixture analysis in a forensic context: evaluating the probative value using a likelihood ratio model. Forensic Sci. Int. Genet. 16, 17–25 (2015)CrossRefGoogle Scholar
  31. 31.
    Egeland, T., Dalen, I., Mostad, P.F.: Estimating the number of contributors to a DNA profile. Int. J. Legal Med. 117, 271–275 (2003)CrossRefGoogle Scholar
  32. 32.
    Curran, J.M., Triggs, C.M., Buckleton, J., Weir, B.S.: Interpreting DNA mixtures in structured populations. J. Forensic Sci. 44, 987–995 (1999)Google Scholar
  33. 33.
    Haned, H., De Jong, J.: LRmix Studio 2.1 user manual (2016)Google Scholar
  34. 34.
    Lauritzen, S.L.: Statistical and computational methodology for the analysis of forensic DNA mixtures with artefacts (2014)Google Scholar
  35. 35.
    Haned, H.: Forensim: an open-source initiative for the evaluation of statistical methods in forensic genetics. Forensic Sci. Int. Genet. 5, 265–268 (2011)CrossRefGoogle Scholar
  36. 36.
    Gill, P., Sparkes, R., Pinchin, R., Clayton, T., Whitaker, J., Buckleton, J.: Interpreting simple STR mixtures using allele peak areas. Forensic Sci. Int. 91, 41–53 (1998)CrossRefGoogle Scholar
  37. 37.
    Kling, D., Egeland, T., Tillmar, A.O.: FamLink – A user friendly software for linkage calculations in family genetics. Forensic Sci. Int. Genet. 6, 616–620 (2012)CrossRefGoogle Scholar
  38. 38.
    Tvedebrink, T., Eriksen, P.S., Mogensen, H.S., Morling, N.: Evaluating the weight of evidence by using quantitative short tandem repeat data in DNA mixtures. J. R. Stat. Soc. Ser. C (Appl. Stat.) 59, 855–874 (2010)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Developmental validation of STRmixTM: Expert software for the interpretation of forensic DNA profiles. Forensic Sci. Int. Genet. 23, 226–239 (2016)CrossRefGoogle Scholar
  40. 40.
    Bleka, Ø.: An introduction to EuroForMix (v1.8) 2016, 1–59 (2016)Google Scholar
  41. 41.
    Mehmood, R., Crowcroft, J.: Parallel Iterative solution method for Large Sparse Linear Equation Systems, vol. 22 (2005)Google Scholar
  42. 42.
    Mehmood, R.: Serial disk-based analysis of large stochastic models. In: Baier, C., Haverkort, Boudewijn R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 230–255. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24611-4_7CrossRefzbMATHGoogle Scholar
  43. 43.
    Altowaijri, S., Mehmood, R., Williams, J.: A quantitative model of grid systems performance in healthcare organisations. In: 2010 International Conference on Intelligent Systems, Modelling and Simulation, pp. 431–436. IEEE (2010)Google Scholar
  44. 44.
    Mehmood, R., Crowcroft, J., Hand, S., Smith, S.: Grid-level computing needs pervasive debugging. In: The 6th IEEE/ACM International Workshop on Grid Computing, 2005, p. 8. IEEE (2005)Google Scholar
  45. 45.
    Tawalbeh, L.A., Mehmood, R., Benkhlifa, E., Song, H.: Mobile cloud computing model and big data analysis for healthcare applications. IEEE Access. 4, 6171–6180 (2016)CrossRefGoogle Scholar
  46. 46.
    Tawalbeh, L.A., Bakhader, W., Mehmood, R., Song, H.: Cloudlet-based mobile cloud computing for healthcare applications. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2016)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  1. 1.Department of Computer Science, Faculty of Computing and Information Technology (FCIT)King Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  2. 2.High-Performance Computing CenterKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  3. 3.Computational Bioscience Research Center (CBRC)King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia

Personalised recommendations