General Intensive Care Monitoring and Management

  • Joan Sánchez-de-Toledo
  • Lucas Sáenz
  • Daniel Pereda
Part of the Congenital Heart Disease in Adolescents and Adults book series (CHDAA)


There are currently more adults than children with congenital heart disease. ACHD patients are surviving into adulthood with a myriad of potential problems related not only to the primary cardiac disease but also to comorbidities and acquired illnesses. This, allied to a complex psychosocial landscape and neurodevelopmental disturbances, makes it vital for inter- and transdisciplinary teams to collaborate in highly reliable medical environments in order to provide a tailored and consistently high level of safe and efficient care. Goal-oriented therapy for ACHD patients admitted to the intensive care environment needs appropriate and reliable monitoring tool and strategies. This chapter overviews the currently available monitoring technologies utilized to efficiently monitor critically ill ACHD.


Adult with congenital heart disease Cardiovascular Monitoring Cardiac surgery 


  1. 1.
    Moodie DS, Ritter DG, Tajik AJ, O'Fallon WM. Long-term follow-up in the unoperated univentricular heart. Am J Cardiol. 1984;53(8):1124–8.CrossRefGoogle Scholar
  2. 2.
    Ammash NM, Warnes CA. Survival into adulthood of patients with unoperated single ventricle. Am J Cardiol. 1996;77(7):542–4.CrossRefGoogle Scholar
  3. 3.
    Kaemmerer H, Mebus S, Schulze-Neick I, Eicken A, Trindade PT, Hager A, Oechslin E, Niwa K, Lang I, Hess J. The adult patient with Eisenmenger syndrome: a medical update after Dana point the adult patient with Eisenmenger syndrome: part I: epidemiology, clinical aspects and diagnostic options. Curr Cardiol Rev. 2010;6:343.CrossRefGoogle Scholar
  4. 4.
    Kidd L, Driscoll DJ, Gersony WM, et al. Second natural history study of congenital heart defects. Results of treatment of patients with ventricular septal defects. Circulation. 1993;87(Suppl):138–51.Google Scholar
  5. 5.
    Saha A, Balakrishnan KG, Jaiswal PK, et al. Prognosis for patient with Eisenmenger syndrome of various aetiology. Int J Cardiol. 1994;45(3):199–207.CrossRefGoogle Scholar
  6. 6.
    Galiè N, Beghetti M, Gatzoulis MA, Granton J, Berger RMF, Lauer A, Chiossi E, Landzberg M. Bosentan therapy in patients with Eisenmenger syndrome. Circulation. 2006;114:48–54.CrossRefGoogle Scholar
  7. 7.
    Adriaenssens T, Delcroix M, Van Deyk K, Budts W. Advanced therapy may delay the need for transplantation in patients with the Eisenmenger syndrome. Eur Heart J. 2006;27(12):1472–7.CrossRefGoogle Scholar
  8. 8.
    Braverman AC, Güven H, Beardslee MA, Makan M, Kates AM, Moon MR. The bicuspid aortic valve. Curr Probl Cardiol. 2005;30(9):470–522.CrossRefGoogle Scholar
  9. 9.
    Niaz T, Poterucha JT, Johnson JN, Craviari C, Nienaber T, Palfreeman J, Cetta F, Hagler DJ. Incidence, morphology, and progression of bicuspid aortic valve in pediatric and young adult subjects with coexisting congenital heart defects. Congenit Heart Dis. 2017;12(3):261–9. Scholar
  10. 10.
    Vonder Muhll IF, Sehgal T, Ian Paterson D. The adult with repaired coarctation: need for lifelong surveillance. Can J Cardiol. 2016;32:1038.e11.CrossRefGoogle Scholar
  11. 11.
    Torok RD, Campbell MJ, Fleming GA, Hill KD. Coarctation of the aorta: management from infancy to adulthood. World J Cardiol. 2015;7(11):765–75.CrossRefGoogle Scholar
  12. 12.
    Roifman I, Therrien J, Ionescu-Ittu R, Pilote L, Guo L, Kotowycz MA, Martucci G, Marelli AJ. Coarctation of the aorta and coronary artery disease fact or fiction? Circulation. 2012;126:16–21.CrossRefGoogle Scholar
  13. 13.
    Cuypers JAAE, Menting ME, Konings EEM, Opić P, Utens EMWJ, Helbing WA, Witsenburg M, van den Bosch AE, Ouhlous M, van Domburg RT, Rizopoulos D, Meijboom FJ, Boersma E, Bogers AJJC, Roos-Hesselink JW. Unnatural history of tetralogy of Fallot prospective follow-up of 40 years after surgical correction. Circulation. 2014;130:1944–53.CrossRefGoogle Scholar
  14. 14.
    Dennis M, Moore B, Kotchetkova I, Pressley L, Cordina R, Celermajer DS. Adults with repaired tetralogy: low mortality but high morbidity up to middle age. Open Heart. 2017;4:e000564.CrossRefGoogle Scholar
  15. 15.
    Knauth AL, Gauvreau K, Powell AJ, Landzberg MJ, Walsh EP, Lock JE, del Nido PJ, Geva T. Ventricular size and function assessed by cardiac MRI predict major adverse clinical outcomes late after tetralogy of Fallot repair. Heart. 2008;94:211–6. Scholar
  16. 16.
    Dobbels B, Herregods M-C, Troosta E, Van De Bruaene A, Rega F, Budts W, De Meester P. Early versus late pulmonary valve replacement in patients with transannular patch-repaired tetralogy of Fallot. Interact Cardiovasc Thorac Surg. 2017;25:427–33.CrossRefGoogle Scholar
  17. 17.
    Haeffele C, Lui GK. Dextro-transposition of the great arteries long-term sequelae of atrial and arterial switch. Cardiol Clin. 2015;33:543–58.CrossRefGoogle Scholar
  18. 18.
    Sarkar D, Bull C, Yates R, Wright D, Cullen S, Gewillig M, Clayton R, Tunstill A, Deanfield J. Comparison of long-term outcomes of atrial repair of simple transposition with implications for a late arterial switch strategy. Circulation. 1999;100(Suppl II):II-176–81.Google Scholar
  19. 19.
    Kammeraad JAE, van Deurzen CHM, Sreeram N, Bink-Boelkens MTE, Ottenkamp J, Helbing WA, Lam J, Sobotka-Plojhar MA, Balaji ODS. Predictors of sudden cardiac death after mustard or Senning repair for transposition of the great arteries. J Am Coll Cardiol. 2004;44:1095–102.CrossRefGoogle Scholar
  20. 20.
    Lui GK, Fernandes S, McElhinney DB. Management of cardiovascular risk factors in adults with congenital heart disease. J Am Heart Assoc. 2014;3:e001076.CrossRefGoogle Scholar
  21. 21.
    Schwartz ML, Gauvreau K, del Nido P, Mayer JE, Colan SD. Long-term predictors of aortic root dilation and aortic regurgitation after arterial switch operation. Circulation. 2004;110(Suppl II):II-128–32.Google Scholar
  22. 22.
    Safi LM, Bhatt AB. Update on the management of adults with arterial switch procedure for transposition of the great arteries. Curr Treat Options Cardiovasc Med. 2017;19:4.CrossRefGoogle Scholar
  23. 23.
    Flack EC, Kaushik N, Graham TP. Congenitally corrected transposition of the great arteries (Chapter 7). In: Vijayalakshmi IB, Syamasundar Rao P, Chugh R, editors. A comprehensive approach to congenital heart disease. 1st ed. New Delhi: Jaypee Brothers Medical Publishers; 2013. isbn:978-93-5090-267-7.Google Scholar
  24. 24.
    Graham TP Jr, Bernard YD, Mellen BG, Celermajer D, Baumgartner H, Cetta F, Connolly HM, Davidson WR, Dellborg M, Foster E, Gersony WM, Gessner IH, Hurwitz RA, Kaemmerer H, Kugler JD, Murphy DJ, Noonan JA, Morris C, Perloff JK, Sanders SP, Sutherland JL. Long-term outcome in congenitally corrected transposition of the great arteries: a multi-institutional study. J Am Coll Cardiol. 2000;36(1):255–61.CrossRefGoogle Scholar
  25. 25.
    Monnet X, Teboul JL, Richard C. Cardiopulmonary interactions in patients with heart failure. Curr Opin Crit Care. 2007;13(1):6–11.CrossRefGoogle Scholar
  26. 26.
    Bojan M, Gioanni S, Mauriat P, Pouard P. High-frequency oscillatory ventilation and short-term outcome in neonates and infants undergoing cardiac surgery: a propensity score analysis. Crit Care. 2011;15(5):R259.CrossRefGoogle Scholar
  27. 27.
    Valika AA, Costanzo MR. The acute cardiorenal syndrome type I: considerations on physiology, epidemiology, and therapy. Curr Heart Fail Rep. 2014;11(4):382–92.CrossRefGoogle Scholar
  28. 28.
    Pickering JW, James MT, Palmer SC. Acute kidney injury and prognosis after cardiopulmonary bypass: a meta-analysis of cohort studies. Am J Kidney Dis Off J Natl Kidney Found. 2015;65(2):283–93.CrossRefGoogle Scholar
  29. 29.
    Mariscalco G, Lorusso R, Dominici C, Renzulli A, Sala A. Acute kidney injury: a relevant complication after cardiac surgery. Ann Thorac Surg. 2011;92(4):1539–47.CrossRefGoogle Scholar
  30. 30.
    De Vecchis R, Esposito C, Ariano C. Efficacy and safety assessment of isolated ultrafiltration compared to intravenous diuretics for acutely decompensated heart failure: a systematic review with meta-analysis. Minerva Cardioangiol. 2014;62(2):131–46.PubMedGoogle Scholar
  31. 31.
    Bojan M, Gioanni S, Vouhé PR, Journois D, Pouard P. Early initiation of peritoneal dialysis in neonates and infants with acute kidney injury following cardiac surgery is associated with a significant decrease in mortality. Kidney Int. 2012;82(4):474–81.CrossRefGoogle Scholar
  32. 32.
    Ronco C, Ricci Z, Goldstein SL. (R)evolution in the management of acute kidney injury in newborns. Am J Kidney Dis Off J Natl Kidney Found. 2015;66(2):206–11.CrossRefGoogle Scholar
  33. 33.
    May L, Longhurst CA, Pageler NM, Wood MS, Sharek PJ, Zebrack CM. Optimizing care of adults with congenital heart disease in a pediatric cardiovascular ICU using electronic clinical decision support. Pediatr Crit Care Med. 2014;15(5):428–34.CrossRefGoogle Scholar
  34. 34.
    Huygh J, Peeters Y, Bernards J, Malbrain MLNG. REVIEW. Hemodynamic monitoring in the critically ill: an overview of current cardiac output monitoring methods. F1000Research. 2855;5(F1000 Faculty Rev):2016.Google Scholar
  35. 35.
    Poets CF, Southall DP. Noninvasive monitoring of oxygenation in infants and children: practical considerations and areas of concern. Pediatrics. 1994;93(5):737–46.PubMedGoogle Scholar
  36. 36.
    Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology. 1998;89(6):1313–21.CrossRefGoogle Scholar
  37. 37.
    Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.CrossRefGoogle Scholar
  38. 38.
    Kern JW, Shoemaker WC. Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med. 2002;30(8):1686–92.CrossRefGoogle Scholar
  39. 39.
    Swan HJ, Ganz W, Forrester J, et al. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med. 1970;283(9):447–51.CrossRefGoogle Scholar
  40. 40.
    Vermeij CG, Feenstra BW, Adrichem WJ, Bruining HA. Independent oxygen uptake and oxygen delivery in septic and postoperative patients. Chest. 1991;99(6):1438.CrossRefGoogle Scholar
  41. 41.
    Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–7.CrossRefGoogle Scholar
  42. 42.
    Boyle M, Lawrence J, Belessis A, Murgo M, Shehabi Y. Comparison of dynamic measurements of pulse contour with pulsed heat continuous cardiac output in postoperative cardiac surgical patients. Aust Crit Care. 2007;20(1):27–32.CrossRefGoogle Scholar
  43. 43.
    Dark PM, Singer M. The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med. 2004;30(11):2060–6.CrossRefGoogle Scholar
  44. 44.
    Manasia AR, Nagaraj HM, Kodali RB, et al. Feasibility and potential clinical utility of goal-directed transthoracic echocardiography performed by noncardiologist intensivists using a small hand-carried device (SonoHeart) in critically ill patients. J Cardiothorac Vasc Anesth. 2005;19(2):155–9.CrossRefGoogle Scholar
  45. 45.
    Shoemaker WC, Beizberg H, Wo CC, et al. Multicenter study of noninvasive monitoring systems as alternatives to invasive monitoring of acutely ill emergency patients. Chest. 1998;114(6):1643–52.CrossRefGoogle Scholar
  46. 46.
    Porter JM, Swain ID. Measurement of cardiac output by electrical impedance plethysmograph. J Biomed Eng. 1987;9(3):222–31.CrossRefGoogle Scholar
  47. 47.
    Gomez H, Torres A, Polanco P, et al. Use of non-invasive NIRS during a vascular occlusion test to assess dynamic tissue O2 saturation response. Intensive Care Med. 2008;34(9):1600–7.CrossRefGoogle Scholar
  48. 48.
    Santora RJ, Moore FA. Monitoring trauma and intensive care unit resuscitation with tissue hemoglobin oxygen saturation. Crit Care. 2009;13(Suppl 5):S10.CrossRefGoogle Scholar
  49. 49.
    Bhalala US, Nishisaki A, McQueen D, Bird GL, Morrison WE, Nadkarni VM, Nathan M, Starr JP. Change in regional (somatic) near-infrared spectroscopy is not a useful indicator of clinically detectable low cardiac output in children after surgery for congenital heart defects. Pediatr Crit Care Med. 2012;13(5):529–34.CrossRefGoogle Scholar
  50. 50.
    Monthé-Sagan K, Fischer MO, Saplacan V, Gerard JL, Hanouz JL, Fellahi JL. Near-infrared spectroscopy to assess microvascular dysfunction: a prospective pilot study in cardiac surgery patients. J Crit Care. 2016;31(1):264–8.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Joan Sánchez-de-Toledo
    • 1
    • 2
  • Lucas Sáenz
    • 1
  • Daniel Pereda
    • 3
  1. 1.Cardiac Intensive Care DivisionChildren’s Hospital of PittsburghPittsburghUSA
  2. 2.Department of Pediatric CardiologyHospital Sant Joan de DéuBarcelonaSpain
  3. 3.Department of Cardiovascular Surgery and Adult Cardiac Intensive Care UnitHospital ClínicBarcelonaSpain

Personalised recommendations