Advertisement

Cardiovascular Disease and Acute Coronary Syndrome in the Adult Patient with Congenital Heart Disease

  • Jordan D. Awerbach
  • Wayne J. Franklin
  • Ronald A. Bronicki
  • Peter R. Ermis
Chapter
Part of the Congenital Heart Disease in Adolescents and Adults book series (CHDAA)

Abstract

The number of patients with congenital heart disease (CHD) reaching adulthood has risen dramatically over time. With over 90% of the CHD population surviving, there are now more adults with CHD than children. As this population ages, they face both the inherent risks associated with their underlying cardiac lesions and the increasing possibility of acquired cardiovascular disease. This chapter reviews the global burden of cardiovascular disease and discusses cardiovascular risk assessment as it pertains to the adult congenital heart disease population and the presentation and management of acute coronary syndromes.

Keywords

Adult congenital heart disease Cardiovascular disease Risk factors Coronary artery disease Acute coronary syndrome Myocardial infarction ST-elevation myocardial infarction Non-ST-elevation myocardial infarction Unstable angina 

References

  1. 1.
    Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics—2017 update. Circulation. 2017;135:e1–458.CrossRefGoogle Scholar
  2. 2.
    Pillutla P, Shetty KD, Foster E. Mortality associated with adult congenital heart disease: trends in the US population from 1979 to 2005. Am Heart J. 2009;158(5):874–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Giannakoulas G, Dimopoulos K, Engel R, Goktekin O, Kucukdurmaz Z, Vatankulu MA, et al. Burden of coronary artery disease in adults with congenital heart disease and its relation to congenital and traditional heart risk factors. Am J Cardiol. 2009;103(10):1445–50.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Lui GK, Fernandes S, McElhinney DB. Management of cardiovascular risk factors in adults with congenital heart disease. J Am Heart Assoc. 2014;3(6):e001076.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Tutarel O, Kempny A, Alonso-Gonzalez R, Jabbour R, Li W, Uebing A, et al. Congenital heart disease beyond the age of 60: emergence of a new population with high resource utilization, high morbidity, and high mortality. Eur Heart J. 2014;35(11):725–32.PubMedCrossRefGoogle Scholar
  6. 6.
    Tutarel O. Acquired heart conditions in adults with congenital heart disease: a growing problem. Heart. 2014;100:1317–21.PubMedCrossRefGoogle Scholar
  7. 7.
    Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes J. Factors of risk in the development of coronary heart disease-six year follow-up experience. The Framingham Study. Ann Intern Med. 1961;55:33–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Moons P, Deyk KV, Dedroog D, Troost E, Budts W. Prevalence of cardiovascular risk factors in adults with congenital heart disease. Eur J Cardiovasc Prev Rehabil. 2006;13(4):612–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Bhatt AB, Foster E, Kuehl K, Alpert J, Brabeck S, Crumb S, Davidson WR, Earing MG, Ghoshhajra BB, Karamlou T, Mital S, Ting J, Tseng ZH. Congenital heart disease in the older adult: A scientific statement from the American Heart Association. Circulation. 2015;131(21):1884–931.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Goff DC Jr, Lloyd-Jones DM, Bennett G, Coady S, Sean C, D’Agostino RB Sr, et al. ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2935–59.PubMedCrossRefGoogle Scholar
  11. 11.
    World Health Organization. A global brief on hypertension. Geneva; 2013. p. 1–40. Report No.: WHO/DCO/WHD/2013.2.Google Scholar
  12. 12.
    Ridker PM, Libby P, Buring JE, Ridker PM, Libby P, Buring JE. Risk markers and the primary prevention of cardiovascular disease. In: Braunwald’s heart disease a textbook of cardiovascular medicine. 10th ed. Philadelphia: Elsevier; 2015. p. 891–933.Google Scholar
  13. 13.
    Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, SM DP, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC Jr, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA Sr, Williamson JD, Wright JT Jr. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults. J Am Coll Cardiol. 2018;71(19):e127–248.PubMedCrossRefGoogle Scholar
  14. 14.
    Cohen M, Fuster V, Steele PM, Driscoll D, McGoon DC. Coarctation of the aorta. Circulation. 1989;80:840–5.CrossRefGoogle Scholar
  15. 15.
    Canniffe C, Ou P, Walsh K, Bonnet D, Celermajer D. Hypertension after repair of aortic coarctation—a systematic review. Int J Cardiol. 2013;167(6):2456–61.PubMedCrossRefGoogle Scholar
  16. 16.
    Bocelli A, Favilli S, Pollini I, Bini RM, Ballo P, Chiappa E, et al. Prevalence and long-term predictors of left ventricular hypertrophy, late hypertension, and hypertensive response to exercise after successful aortic coarctation repair. Pediatr Cardiol. 2012;34(3):620–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Quennelle S, Powell AJ, Geva T, Prakash A. Persistent aortic arch hypoplasia after coarctation treatment is associated with late systemic hypertension. J Am Heart Assoc. 2015;4(7):e001978.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    National Cholesterol Education Program (NCEP). Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation. 2002;106(5):3143–421.Google Scholar
  19. 19.
    Cholesterol Treatment Trialists’ CTT Collaboration. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170000 participants in 26 randomised trials. Lancet. 2010;376:1670–81.PubMedCentralCrossRefGoogle Scholar
  20. 20.
    Cholesterol Treatment Trialists’ CTT Collaborators. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380:581–90.PubMedCentralCrossRefGoogle Scholar
  21. 21.
    Zomer AC, Vaartjes I, Uiterwaal CSP, van der Velde ET, Sieswerda GJT, Wajon EMC, et al. Social burden and lifestyle in adults with congenital heart disease. Am J Cardiol. 2012;109(11):1657–63.PubMedCrossRefGoogle Scholar
  22. 22.
    Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311(8):806–9.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zaidi AN, Bauer JA, Michalsky MP, Olshove V, Boettner B, Phillips A, Cook SC. The impact of obesity on early postoperative outcomes in adults with congenital heart disease. Congenit Heart Dis. 2011;6(3):241–6.PubMedCrossRefGoogle Scholar
  24. 24.
    World Health Organization. Global report on diabetes. Geneva; 2016. p. 1–88.Google Scholar
  25. 25.
    Wang P, Huang R, Lu S, Xia W, Sun H, Sun J, et al. HbA1c below 7% as the goal of glucose control fails to maximize the cardiovascular benefits: a meta-analysis. Cardiovasc Diabetol. 2015;14(124):1–15.Google Scholar
  26. 26.
    Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M, Lafont S, Bergeonneau C, Kassai B, et al. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ. 2011;343:d4169.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hemmingsen B, Lund SS, Gluud C, Vaag A, Almdal TP, Wetterslev J. Targeting intensive glycaemic control versus targeting conventional glycaemic control for type 2 diabetes mellitus (Review). Cochrane Database Syst Rev. 2013;11:CD008143.Google Scholar
  28. 28.
    Savji N, Rockman CB, Skolnick AH, Guo Y, Adelman MA, Riles T, et al. Association between advanced age and vascular disease in different arterial territories. A population database of over 3.6 million subjects. J Am Coll Cardiol. 2013;61(16):1736–43.PubMedCrossRefGoogle Scholar
  29. 29.
    Lloyd-Jones DM, Nam B-H, D’Agostino RB Sr, Levy D, Murabito JM, Wang TJ, et al. Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults. JAMA. 2004;3291:2204–11.CrossRefGoogle Scholar
  30. 30.
    Miyamoto K, Takeuchi D, Inai K, Shinohara T, Nakanishi T. Prognostic value of multiple biomarkers for cardiovascular mortality in adult congenital heart disease: comparisons of single-/two-ventricle physiology, and systemic morphologically right/left ventricles. Heart Vessel. 2016;31:1834–47.CrossRefGoogle Scholar
  31. 31.
    Tomita H, Takamuro M, Soda W, Hatakeyama K, Tsutsumi H. Increased serum high-sensitivity C-reactive protein is related to hypoxia and brain natriuretic peptide in congenital heart disease. Pediatr Int. 2008;50:436–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Madhavan MV, Tarigopula M, Mintz GS, Maehara A, Stone GW, Généreux P. Coronary artery calcification. Pathogenesis and prognostic implications. J Am Coll Cardiol. 2014;63(17):1703–14.PubMedCrossRefGoogle Scholar
  33. 33.
    Halpern DG, Steigner ML, Prabhu SP, Valente AM, Sanders SP. Cardiac calcifications in adults with congenital heart defects. Congenit Heart Dis. 2015;10:396–402.PubMedCrossRefGoogle Scholar
  34. 34.
    Fox CS, Evans JC, Larson MG, Kannel WB, Levy D. Temporal trends in coronary heart disease mortality and sudden cardiac death from 1950 to 1999: the Framingham heart study. Circulation. 2004;110:522–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Sidney S, Quesenberry CP Jr, Jaffe MG, Sorel M, Nguyen-Huynh MN, Kushi LH, et al. Recent trends in cardiovascular mortality in the United States and public health goals. JAMA Cardiol. 2016;1(5):594–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Wright RS, Anderson JL, Adams CD, Bridges CR, Casey DE, Ettinger SM, et al. 2011 ACCF/AHA focused update incorporated into the ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction. J Am Coll Cardiol. 2011;57(19):e215–367.PubMedCrossRefGoogle Scholar
  37. 37.
    O’Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, de Lemos JA, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction. J Am Coll Cardiol. 2013;61(4):e78–e140.PubMedCrossRefGoogle Scholar
  38. 38.
    Mega JL, Morrow DA. ST-elevation myocardial infarction: management. In: Braunwald’s heart disease: a textbook of cardiovascular medicine. 10th ed. Philadelphia: Elsevier; 2015. p. 1095–154.Google Scholar
  39. 39.
    Anderson JL, Adams CD, Antman EM, Bridges CR, Califf RM, Casey DE Jr, et al. ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction. J Am Coll Cardiol. 2007;50(7):e1–e157.PubMedCrossRefGoogle Scholar
  40. 40.
    Kumar A, Cannon CP. Acute coronary syndromes: diagnosis and management, Part I. Mayo Clin Proc. 2009;84(10):917–38.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Srikanth S, Ambrose JA. Pathophysiology of coronary thrombus formation and adverse consequences of thrombus during PCI. Curr Cardiol Rev. 2012;8:168–76.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Mirvis DM, Goldberger AL. Electrocardiography. In: Braunwald’s heart disease: a textbook of cardiovascular medicine. 10th ed. Philadelphia: Elsevier; 2015. p. 114–54.Google Scholar
  43. 43.
    Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, ESC/ACCF/AHA/WHF Expert Consensus Document. Third universal definition of myocardial infarction. Circulation. 2012;126(16):2020–35.PubMedCrossRefGoogle Scholar
  44. 44.
    Sgarbossa EB, Pinski SL, Barbagelata A, Underwood DA, Gates KB, Topol EJ, et al. Electrocardiographic diagnosis of evolving acute myocardial infarction in the presence of left bundle-branch block. N Engl J Med. 1996;334(8):481–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Smith SW, Dodd KW, Henry TD, Dvorak DM, Pearce LA. Diagnosis of ST-elevation myocardial infarction in the presence of left bundle branch block with the ST-elevation to S-wave ratio in a modified Sgarbossa rule. Ann Emerg Med. 2012;60(6):766–76.PubMedCrossRefGoogle Scholar
  46. 46.
    Meyers HP, Limkakeng AT Jr, Jaffa EJ, Patel A, Theiling BJ, Rezaie SR, et al. Validation of the modified Sgarbossa criteria for acute coronary occlusion in the setting of left bundle branch block: a retrospective case-control study. Am Heart J. 2015;170:1255–64.PubMedCrossRefGoogle Scholar
  47. 47.
    Amsterdam EA, Wenger NK, Brindis RG, Casey DE Jr, Ganiats TG, Holmes DR Jr, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;64(24):e139–228.PubMedCrossRefGoogle Scholar
  48. 48.
    Newby LK, Roe MT, Chen AY, Ohman EM, Christenson RH, Pollack CV, et al. Frequency and clinical implications of discordant creatine kinase-MB and troponin measurements in acute coronary syndromes. J Am Coll Cardiol. 2006;47:312–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Giugliano RP, Cannon CP, Braunwald E, Giugliano RP, Braunwald E. Non-ST elevation acute coronary syndromes. In: Braunwald’s heart disease: a textbook of cardiovascular medicine. 10th ed. Philadelphia: Elsevier; 2015. p. 27.Google Scholar
  50. 50.
    Patti G, Cannon CP, Murphy SA, Mega S, Pasceri V, Briguori C, et al. Clinical benefit of statin pretreatment in patients undergoing percutaneous coronary intervention: a collaborative patient-level meta-analysis of 13 randomized studies. Circulation. 2011;123:1622–32.PubMedCrossRefGoogle Scholar
  51. 51.
    Scirica BM, Morrow DA. ST-elevation myocardial infarction: pathology, pathophysiology, and clinical features. In: Braunwald’s heart disease: a textbook of cardiovascular medicine. 10th ed. Philadelphia: Elsevier; 2015. p. 27.Google Scholar
  52. 52.
    Keeley EC, Hillis LD. Primary PCI for myocardial infarction with ST-segment elevation. N Engl J Med. 2007;356:47–54.PubMedCrossRefGoogle Scholar
  53. 53.
    Pinto DS, Frederick PD, Chakrabarti AK, Kirtane AJ, Ullman E, Dejam A, et al. Benefit of transferring ST-segment-elevation myocardial infarction patients for percutaneous coronary intervention compared with administration of onsite fibrinolytic declines as delays increase. Circulation. 2011;124:2512–21.PubMedCrossRefGoogle Scholar
  54. 54.
    Terkelsen CJ, Sorensen JT, Maeng M, Jensen LO, Tilsted H-H, Trautner S, et al. System delay and mortality among patients with STEMI treated with primary percutaneous coronary intervention. JAMA. 2010;304(7):763–71.PubMedCrossRefGoogle Scholar
  55. 55.
    Mauri L, Bhatt DL, Mauri L, Bhatt DL. Percutaneous coronary intervention. In: Braunwald’s heart disease: a textbook of cardiovascular medicine. 10th ed. Philadelphia: Elsevier; 2015. p. 24.Google Scholar
  56. 56.
    Levine GN, Bates ER, Bittl JA, Brindis RG, Fihn SD, Fleisher LA, et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with Coronary Artery Disease. J Am Coll Cardiol. 2016;68(10):1082–115.PubMedCrossRefGoogle Scholar
  57. 57.
    Braunwald E. Unstable angina and non-ST elevation myocardial infarction. Am J Respir Crit Care Med. 2012;185(9):924–32.PubMedCrossRefGoogle Scholar
  58. 58.
    Damman P, Woudstra P, Kuijt WJ, de Winter RJ, James SK. P2Y12 platelet inhibition in clinical practice. J Thromb Thrombolysis. 2011;33:143–53.PubMedCentralCrossRefGoogle Scholar
  59. 59.
    White HD, Chew DP. Acute myocardial infarction. Lancet. 2008;372:570–84.PubMedCrossRefGoogle Scholar
  60. 60.
    Fibrinolytic Therapy Trialists’ FTT Collaborative Group. Indications for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients. Lancet. 1994;343:311–22.Google Scholar
  61. 61.
    Van de Werf F. Single-bolus tenecteplase compared with front-loaded alteplase in acute myocardial infarction: the ASSENT-2 double-blind randomised trial. Lancet. 1999;354(9180):716–22.CrossRefGoogle Scholar
  62. 62.
    Morice MC, Serruys PW, Kappetein AP, Feldman TE, Stahle E, Colombo A, et al. Five-year outcomes in patients with left main disease treated with either percutaneous coronary intervention or coronary artery bypass grafting in the synergy between percutaneous coronary intervention with taxus and cardiac surgery trial. Circulation. 2014;129(23):2388–94.PubMedCrossRefGoogle Scholar
  63. 63.
    Sipahi I, Akay MH, Dagdelen S, Blitz A, Alhan C. Coronary artery bypass grafting vs percutaneous coronary intervention and long-term mortality and morbidity in multivessel disease. JAMA Intern Med. 2014;174(2):223–30.PubMedCrossRefGoogle Scholar
  64. 64.
    Kutty RS, Jones N, Moorjani N. Mechanical complications of acute myocardial infarction. Cardiol Clin. 2013;31:519–31.PubMedCrossRefGoogle Scholar
  65. 65.
    Yeh RW, Sidney S, Chandra M, Sorel M, Selby JV, Go AS. Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med. 2010;362:2155–65.PubMedCrossRefGoogle Scholar
  66. 66.
    Roe MT, Messenger JC, Weintraub WS, Cannon CP, Fonarow GC, Dai D, et al. Treatments, trends, and outcomes of acute myocardial infarction and percutaneous coronary intervention. J Am Coll Cardiol. 2010;56(4):254–63.PubMedCrossRefGoogle Scholar
  67. 67.
    Vora AN, Wang TY, Hellkamp AS, Thomas L, Henry TD, Goyal A, et al. Differences in short- and long-term outcomes among older patients with ST-elevation verses non-ST-elevation myocardial infarction with angiographically proven coronary artery disease. Circ Cardiovasc Qual Outcomes. 2016;9:513–22.PubMedCrossRefGoogle Scholar
  68. 68.
    Fox KAA, Clayton TC, Damman P, Pocock SJ, de Winter RJ, Tijssen JGP, et al. Long-term outcome of a routine versus selective invasive strategy in patients with non-ST-segment elevation acute coronary syndrome. J Am Coll Cardiol. 2010;55(22):2435–45.PubMedCrossRefGoogle Scholar
  69. 69.
    Anderson ML, Peterson ED, Peng SA, Wang TY, Ohman EM, Bhatt DL, et al. Differences in the profile, treatment, and prognosis of patients with cardiogenic shock by myocardial infarction classification. Circ Cardiovasc Qual Outcomes. 2013;6:708–15.PubMedCrossRefGoogle Scholar
  70. 70.
    Tanaka A, Shimada K, Sano T, Namba M, Sakamoto T, Nishida Y, et al. Multiple plaque rupture and C-reactive protein in acute myocardial infarction. J Am Coll Cardiol. 2005;45(10):1594–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Jordan D. Awerbach
    • 1
  • Wayne J. Franklin
    • 1
  • Ronald A. Bronicki
    • 2
  • Peter R. Ermis
    • 1
  1. 1.Section of Pediatric Cardiology, Department of PediatricsBaylor College of Medicine, Texas Children’s HospitalHoustonUSA
  2. 2.Section of Critical Care Medicine and Cardiology, Department of PediatricsBaylor College of Medicine, Texas Children’s HospitalHoustonUSA

Personalised recommendations