Advertisement

Advanced Cardiac Support in Adults with Congenital Heart Disease

  • Scott R. AuerbachEmail author
  • Andreas Brieke
Chapter
Part of the Congenital Heart Disease in Adolescents and Adults book series (CHDAA)

Abstract

Survival of children born with congenital heart disease (CHD) has been improving for decades, thanks to improvements in surgical techniques and postoperative care. Adults with congenital heart disease (ACHD) now outnumber children with CHD. As survival into adulthood has increased, so has the complexity and severity of CHD in addition to the association of heart failure (HF) in ACHD. ACHD HF is unique compared to non-ACHD HF in adults, and its evaluation and management were outlined in a statement by the American Heart Association. ACHD HF is less likely to be primarily ischemic. There are heterogeneous anatomic lesions. Many have failing systemic right ventricles (RV) that are not designed to pump against systemic resistance. Additionally, anemia, cyanosis, HF multiplied across decades, chronotropic incompetence, and a higher risk of arrhythmias complicate the disease course. There is lack of evidence-based data to guide medical treatments, interventions, and surgical therapies. This chapter reviews management of adult patients with CGD who require individualization based on the patient’s anatomy, physiology, and comorbidities.

Keywords

Heart failure Adult with congenital heart disease Mechanical circulatory support Ventricular assist device ECLS Extracorporeal life support ECMO Extracorporeal membrane oxygenation 

References

  1. 1.
    Boneva RS, Botto LD, Moore CA, Yang Q, Correa A, Erickson JD. Mortality associated with congenital heart defects in the United States: trends and racial disparities, 1979–1997. Circulation. 2001;103:2376–81.CrossRefGoogle Scholar
  2. 2.
    Khairy P, Ionescu-Ittu R, Mackie AS, Abrahamowicz M, Pilote L, Marelli AJ. Changing mortality in congenital heart disease. J Am Coll Cardiol. 2010;56:1149–57.CrossRefGoogle Scholar
  3. 3.
    Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation. 2007;115:163–72.CrossRefGoogle Scholar
  4. 4.
    Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Dendukuri N, Kaouache M. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. 2014;130:749–56.CrossRefGoogle Scholar
  5. 5.
    van der Bom T, Mulder BJ, Meijboom FJ, van Dijk AP, Pieper PG, Vliegen HW, Konings TC, Zwinderman AH, Bouma BJ. Contemporary survival of adults with congenital heart disease. Heart. 2015;101:1989–95.CrossRefGoogle Scholar
  6. 6.
    Ross HJ, Law Y, Book WM, Broberg CS, Burchill L, Cecchin F, Chen JM, Delgado D, Dimopoulos K, Everitt MD, Gatzoulis M, Harris L, Hsu DT, Kuvin JT, Martin CM, Murphy AM, Singh G, Spray TL, Stout KK, American Heart Association Adults with Congenital Heart Disease Committee of the Council on Cardiovascular Disease in the Young, Council on Cardiovascular and Stroke Nursing, Council on Functional Genomics and Translational Biology, and American College of Cardiology. Transplantation and mechanical circulatory support in congenital heart disease: a scientific statement from the American Heart Association. Circulation. 2016a;133:802–20.CrossRefGoogle Scholar
  7. 7.
    Verheugt CL, Uiterwaal CS, van der Velde ET, Meijboom FJ, Pieper PG, van Dijk AP, Vliegen HW, Grobbee DE, Mulder BJ. Mortality in adult congenital heart disease. Eur Heart J. 2010;31:1220–9.CrossRefGoogle Scholar
  8. 8.
    Norozi K, Wessel A, Alpers V, Arnhold JO, Binder L, Geyer S, Zoege M, Buchhorn R. Chronotropic incompetence in adolescents and adults with congenital heart disease after cardiac surgery. J Card Fail. 2007;13:263–8.CrossRefGoogle Scholar
  9. 9.
    Khairy P, Van Hare GF, Balaji S, Berul CI, Cecchin F, Cohen MI, Daniels CJ, Deal BJ, Dearani JA, Groot N, Dubin AM, Harris L, Janousek J, Kanter RJ, Karpawich PP, Perry JC, Seslar SP, Shah MJ, Silka MJ, Triedman JK, Walsh EP, Warnes CA, PACES/HRS Expert Consensus Statement on the Recognition and Management of Arrhythmias in Adult Congenital Heart Disease: developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American College of Cardiology (ACC), the American Heart Association (AHA), the European Heart Rhythm Association (EHRA), the Canadian Heart Rhythm Society (CHRS), and the International Society for Adult Congenital Heart Disease (ISACHD). Heart Rhythm. 2014;11:e102–65.CrossRefGoogle Scholar
  10. 10.
    Zomer AC, Vaartjes I, van der Velde ET, de Jong HM, Konings TC, Wagenaar LJ, Heesen WF, Eerens F, Baur LH, Grobbee DE, Mulder BJ. Heart failure admissions in adults with congenital heart disease; risk factors and prognosis. Int J Cardiol. 2013;168:2487–93.CrossRefGoogle Scholar
  11. 11.
    Norozi K, Wessel A, Alpers V, Arnhold JO, Geyer S, Zoege M, Buchhorn R. Incidence and risk distribution of heart failure in adolescents and adults with congenital heart disease after cardiac surgery. Am J Cardiol. 2006;97:1238–43.CrossRefGoogle Scholar
  12. 12.
    Ma K, Li S, Hu S, Hua Z, Yang K, Yan J, Zhang H, Chen Q, Zhang S, Qi L. Neoaortic valve regurgitation after arterial switch: ten years outcomes from a single center. Ann Thorac Surg. 2016;102:636–42.CrossRefGoogle Scholar
  13. 13.
    Hanke JS, ElSherbini A, Avsar M, Horke A, Schmitto JD. Left ventricular assist device implantation in a patient with congenitally corrected transposition of the great arteries. Artif Organs. 2015;39:1069–71.CrossRefGoogle Scholar
  14. 14.
    Gregoric ID, Kosir R, Smart FW, Messner GN, Patel VS, La Francesca S, Cervera RD, Frazier OH. Left ventricular assist device implantation in a patient with congenitally corrected transposition of the great arteries. Tex Heart Inst J. 2005;32:567–9.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Shim MS, Jun TG, Yang JH, Park PW, Kang IS, Huh J, Song JY. Current expectations of the arterial switch operation in a small volume center: a 20-year, single-center experience. J Cardiothorac Surg. 2016;11:34.CrossRefGoogle Scholar
  16. 16.
    Lo Rito M, Fittipaldi M, Haththotuwa R, Jones TJ, Khan N, Clift P, Brawn WJ, Barron DJ. Long-term fate of the aortic valve after an arterial switch operation. J Thorac Cardiovasc Surg. 2015;149:1089–94.CrossRefGoogle Scholar
  17. 17.
    Villafane J, Lantin-Hermoso MR, Bhatt AB, Tweddell JS, Geva T, Nathan M, Elliott MJ, Vetter VL, Paridon SM, Kochilas L, Jenkins KJ, Beekman RH 3rd, Wernovsky G, Towbin JA. D-transposition of the great arteries: the current era of the arterial switch operation. J Am Coll Cardiol. 2014;64:498–511.CrossRefGoogle Scholar
  18. 18.
    Michalak KW, Moll JA, Moll M, Dryzek P, Moszura T, Kopala M, Mludzik K, Moll JJ. The neoaortic root in children with transposition of the great arteries after an arterial switch operation. Eur J Cardiothorac Surg. 2013;43:1101–8.CrossRefGoogle Scholar
  19. 19.
    Bhagra S, Bhagra C, Ozalp F, Butt T, Ramesh BC, Parry G, Roysam C, Woods A, Robinson-Smith N, Wrightson N, MacGowan GA, Schueler S. Development of de novo aortic valve incompetence in patients with the continuous-flow HeartWare ventricular assist device. J Heart Lung Transplant. 2016;35:312–9.CrossRefGoogle Scholar
  20. 20.
    Khairy P, Fernandes SM, Mayer JE Jr, Triedman JK, Walsh EP, Lock JE, Landzberg MJ. Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation. 2008;117:85–92.CrossRefGoogle Scholar
  21. 21.
    Rychik J, Goldberg DJ. Late consequences of the Fontan operation. Circulation. 2014;130:1525–8.CrossRefGoogle Scholar
  22. 22.
    Khambadkone S, Li J, de Leval MR, Cullen S, Deanfield JE, Redington AN. Basal pulmonary vascular resistance and nitric oxide responsiveness late after Fontan-type operation. Circulation. 2003;107:3204–8.CrossRefGoogle Scholar
  23. 23.
    Whitehead KK, Harris MA, Glatz AC, Gillespie MJ, DiMaria MV, Harrison NE, Dori Y, Keller MS, Rome JJ, Fogel MA. Status of systemic to pulmonary arterial collateral flow after the fontan procedure. Am J Cardiol. 2015;115:1739–45.CrossRefGoogle Scholar
  24. 24.
    Bhatt AB, Foster E, Kuehl K, Alpert J, Brabeck S, Crumb S, Davidson WR Jr, Earing MG, Ghoshhajra BB, Karamlou T, Mital S, Ting J, Tseng ZH, American Heart Association Council on Clinical Cardiology. Congenital heart disease in the older adult: a scientific statement from the American Heart Association. Circulation. 2015;131:1884–931.CrossRefGoogle Scholar
  25. 25.
    Pretre R, Haussler A, Bettex D, Genoni M. Right-sided univentricular cardiac assistance in a failing Fontan circulation. Ann Thorac Surg. 2008;86:1018–20.CrossRefGoogle Scholar
  26. 26.
    Niebler RA, Ghanayem NS, Shah TK, De La Rosa BA, Zangwill S, Brosig C, Frommelt MA, Mitchell ME, Tweddell JS, Woods RK. Use of a HeartWare ventricular assist device in a patient with failed Fontan circulation. Ann Thorac Surg. 2014;97:e115–6.CrossRefGoogle Scholar
  27. 27.
    Morales DL, Adachi I, Heinle JS, Fraser CD Jr. A new era: use of an intracorporeal systemic ventricular assist device to support a patient with a failing Fontan circulation. J Thorac Cardiovasc Surg. 2011;142:e138–40.CrossRefGoogle Scholar
  28. 28.
    Frazier OH, Gregoric ID, Messner GN. Total circulatory support with an LVAD in an adolescent with a previous Fontan procedure. Tex Heart Inst J. 2005;32:402–4.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Stevenson LW, Pagani FD, Young JB, Jessup M, Miller L, Kormos RL, Naftel DC, Ulisney K, Desvigne-Nickens P, Kirklin JK. INTERMACS profiles of advanced heart failure: the current picture. J Heart Lung Transplant. 2009;28:535–41.CrossRefGoogle Scholar
  30. 30.
    Rihal CS, Naidu SS, Givertz MM, Szeto WY, Burke JA, Kapur NK, Kern M, Garratt KN, Goldstein JA, Dimas V, Tu T, Society for Cardiovascular Angiography and Interventions (SCAI); Heart Failure Society of America (HFSA); Society of Thoracic Surgeons (STS); American Heart Association (AHA), and American College of Cardiology (ACC). 2015 SCAI/ACC/HFSA/STS clinical expert consensus statement on the use of percutaneous mechanical circulatory support devices in cardiovascular care (Endorsed by the American Heart Association, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; Affirmation of Value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie d’intervention). Catheter Cardiovasc Interv. 2015a;85:E175–96.CrossRefGoogle Scholar
  31. 31.
    Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, Morgan JA, Arabia F, Bauman ME, Buchholz HW, Deng M, Dickstein ML, El-Banayosy A, Elliot T, Goldstein DJ, Grady KL, Jones K, Hryniewicz K, John R, Kaan A, Kusne S, Loebe M, Massicotte MP, Moazami N, Mohacsi P, Mooney M, Nelson T, Pagani F, Perry W, Potapov EV, Eduardo Rame J, Russell SD, Sorensen EN, Sun B, Strueber M, Mangi AA, Petty MG, Rogers J, International Society for Heart and Lung Transplantation. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32:157–87.CrossRefGoogle Scholar
  32. 32.
    Rihal CS, Naidu SS, Givertz MM, Szeto WY, Burke JA, Kapur NK, Kern M, Garratt KN, Goldstein JA, Dimas V, Tu T, Society for Cardiovascular Angiography and Interventions (SCAI); Heart Failure Society of America (HFSA); Society for Thoracic Surgeons (STS); American Heart Association (AHA); American College of Cardiology (ACC). 2015 SCAI/ACC/HFSA/STS clinical expert consensus statement on the use of percutaneous mechanical circulatory support devices in Cardiovascular Care (Endorsed by the American Heart Association, The Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencionista; Affirmation of Value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie d’intervention). Catheter Cardiovasc Interv. 2015b;85:1112–4.CrossRefGoogle Scholar
  33. 33.
    Lee SJ, Hong SG. Current status of heart transplantation and left ventricular assist device: major changes in the last decade. Hanyang Med Rev. 2014;34:185.CrossRefGoogle Scholar
  34. 34.
    Nagpal AD, Singal RK, Arora RC, Lamarche Y. Temporary mechanical circulatory support in cardiac critical care: a state of the art review and algorithm for device selection. Can J Cardiol. 2017;33:110–8.CrossRefGoogle Scholar
  35. 35.
    Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, Miller MA, Baldwin JT, Young JB. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant. 2015;34:1495.CrossRefGoogle Scholar
  36. 36.
    VanderPluym CJ, Cedars A, Eghtesady P, Maxwell BG, Gelow JM, Burchill LJ, Maltais S, Koehl DA, Cantor RS, Blume ED. Outcomes following implantation of mechanical circulatory support in adults with congenital heart disease: an analysis of the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). J Heart Lung Transplant. 2018;37(1):89–99.CrossRefGoogle Scholar
  37. 37.
    Rihal CS, Naidu SS, Givertz MM, Szeto WY, Burke JA, Kapur NK, Kern M, Garratt KN, Goldstein JA, Dimas V, Tu T, Society for Cardiovascular Angiography and Interventions (SCAI); Heart Failure Society of America (HFSA); Society for Thoracic Surgeons (STS); American Heart Association (AHA); American College of Cardiology (ACC). 2015 SCAI/ACC/HFSA/STS clinical expert consensus statement on the use of percutaneous mechanical circulatory support devices in cardiovascular care: endorsed by the American Heart Association, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; Affirmation of Value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie d'intervention. J Am Coll Cardiol. 2015c;65:e7–e26.CrossRefGoogle Scholar
  38. 38.
    Morales DL, Dibardino DJ, Braud BE, Fenrich AL, Heinle JS, Vaughn WK, McKenzie ED, Fraser CD Jr. Salvaging the failing Fontan: lateral tunnel versus extracardiac conduit. Ann Thorac Surg. 2005;80:1445–51; discussion 1451–2CrossRefGoogle Scholar
  39. 39.
    Lietz K, Long JW, Kfoury AG, Slaughter MS, Silver MA, Milano CA, Rogers JG, Naka Y, Mancini D, Miller LW. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation. 2007;116:497–505.CrossRefGoogle Scholar
  40. 40.
    Cowger J, Sundareswaran K, Rogers JG, Park SJ, Pagani FD, Bhat G, Jaski B, Farrar DJ, Slaughter MS. Predicting survival in patients receiving continuous flow left ventricular assist devices: the HeartMate II risk score. J Am Coll Cardiol. 2013;61:313–21.CrossRefGoogle Scholar
  41. 41.
    Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, Anand I, Maggioni A, Burton P, Sullivan MD, Pitt B, Poole-Wilson PA, Mann DL, Packer M. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation. 2006;113:1424–33.CrossRefGoogle Scholar
  42. 42.
    Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, Baldwin JT, Young JB. Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant. 2013;32:141–56.CrossRefGoogle Scholar
  43. 43.
    Abu Saleh WK, Jabbari OA, Guha A, Loebe M, Bruckner BA. Treatment strategies for patients with an INTERMACS I profile. Methodist Debakey Cardiovasc J. 2015;11:4–8.CrossRefGoogle Scholar
  44. 44.
    Acheampong B, Johnson JN, Stulak JM, Dearani JA, Kushwaha SS, Daly RC, Haile DT, Schears GJ. Postcardiotomy ECMO support after high-risk operations in adult congenital heart disease. Congenit Heart Dis. 2016;11:571–755.CrossRefGoogle Scholar
  45. 45.
    Lequier L, Horton SB, McMullan DM, Bartlett RH. Extracorporeal membrane oxygenation circuitry. Pediatr Crit Care Med. 2013;14:S7–12.CrossRefGoogle Scholar
  46. 46.
    Kukucka M, Stepanenko A, Potapov E, Krabatsch T, Redlin M, Mladenow A, Kuppe H, Hetzer R, Habazettl H. Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2011;30:64–9.CrossRefGoogle Scholar
  47. 47.
    Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, Massey T, Milano CA, Moazami N, Sundareswaran KS, Farrar DJ, HeartMate IICI. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139:1316–24.CrossRefGoogle Scholar
  48. 48.
    Morine KJ, Kiernan MS, Pham DT, Paruchuri V, Denofrio D, Kapur NK. Pulmonary artery pulsatility index is associated with right ventricular failure after left ventricular assist device surgery. J Card Fail. 2016;22:110–6.CrossRefGoogle Scholar
  49. 49.
    Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51:2163–72.CrossRefGoogle Scholar
  50. 50.
    Argiriou M, Kolokotron SM, Sakellaridis T, Argiriou O, Charitos C, Zarogoulidis P, Katsikogiannis N, Kougioumtzi I, Machairiotis N, Tsiouda T, Tsakiridis K, Zarogoulidis K. Right heart failure post left ventricular assist device implantation. J Thorac Dis. 2014;6(Suppl 1):S52–9.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Jouan J, Grinda JM, Bricourt MO, Iserin L, Fabiani JN. Non-pulsatile axial flow ventricular assist device for right systemic ventricle failure late after Senning procedure. Int J Artif Organs. 2009;32:243–5.CrossRefGoogle Scholar
  52. 52.
    Neely RC, Davis RP, Stephens EH, Takayama H, Khalpey Z, Ginns J, Lee SH, Chen J. Ventricular assist device for failing systemic ventricle in an adult with prior mustard procedure. Ann Thorac Surg. 2013;96:691–3.CrossRefGoogle Scholar
  53. 53.
    Joyce DL, Crow SS, John R, St Louis JD, Braunlin EA, Pyles LA, Kofflin P, Joyce LD. Mechanical circulatory support in patients with heart failure secondary to transposition of the great arteries. J Heart Lung Transplant. 2010;29:1302–5.CrossRefGoogle Scholar
  54. 54.
    Maltais S, Kilic A, Nathan S, Keebler M, Emani S, Ransom J, Katz JN, Sheridan B, Brieke A, Egnaczyk G, Entwistle JW 3rd, Adamson R, Stulak J, Uriel N, O'Connell JB, Farrar DJ, Sundareswaran KS, Gregoric I, Investigators PS. PREVENtion of HeartMate II pump thrombosis through clinical management: the PREVENT multi-center study. J Heart Lung Transplant. 2017;36:1–12.CrossRefGoogle Scholar
  55. 55.
    Morshuis M, Boergermann J, Gummert J, Koster A. A modified technique for implantation of the HeartWare left ventricular assist device when using bivalirudin anticoagulation in patients with acute heparin-induced thrombocytopenia. Interact Cardiovasc Thorac Surg. 2013;17:225–6.CrossRefGoogle Scholar
  56. 56.
    Garland C, Somogyi D. Successful implantation of a left ventricular assist device in a patient with heparin-induced thrombocytopenia and thrombosis. J Extra Corpor Technol. 2014;46:162–5.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Slaughter MS, Pagani FD, Rogers JG, Miller LW, Sun B, Russell SD, Starling RC, Chen L, Boyle AJ, Chillcott S, Adamson RM, Blood MS, Camacho MT, Idrissi KA, Petty M, Sobieski M, Wright S, Myers TJ, Farrar DJ, HeartMate IICI. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant. 2010;29:S1–39.CrossRefGoogle Scholar
  58. 58.
    Moazami N, Fukamachi K, Kobayashi M, Smedira NG, Hoercher KJ, Massiello A, Lee S, Horvath DJ, Starling RC. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice. J Heart Lung Transplant. 2013;32:1–11.CrossRefGoogle Scholar
  59. 59.
    Byrnes J, Villa C, Lorts A. Ventricular assist devices in pediatric cardiac intensive care. Pediatr Critical Care Med. 2016;17:S160–70.CrossRefGoogle Scholar
  60. 60.
    Peberdy MA, Gluck JA, Ornato JP, Bermudez CA, Griffin RE, Kasirajan V, Kerber RE, Lewis EF, Link MS, Miller C, Teuteberg JJ, Thiagarajan R, Weiss RM, O’Neil B, American Heart Association Emergency Cardiovascular Care Committee, Council on Cardiopulmonary Critical Care, Perioperative, Resuscitation, Council on Cardiovascular Diseases in the Young, Council on Cardiovascular Surgery and Anesthesia, Council on Cardiovascular and Stroke Nursing and Council on Clinical Cardiology. Cardiopulmonary resuscitation in adults and children with mechanical circulatory support: a scientific statement from the American Heart Association. Circulation. 2017;135:e1115–34.CrossRefGoogle Scholar
  61. 61.
    Cuffe MS, Califf RM, Adams KF Jr, Benza R, Bourge R, Colucci WS, Massie BM, O’Connor CM, Pina I, Quigg R, Silver MA, Gheorghiade M. Outcomes of a prospective trial of intravenous Milrinone for exacerbations of chronic heart failure I. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA. 2002;287:1541–7.CrossRefGoogle Scholar
  62. 62.
    Hasei M, Uchiyama A, Nishimura M, Mashimo T, Fujino Y. Correlation between plasma milrinone concentration and renal function in patients with cardiac disease. Acta Anaesthesiol Scand. 2008;52:991–6.CrossRefGoogle Scholar
  63. 63.
    Maslow AD, Regan MM, Schwartz C, Bert A, Singh A. Inotropes improve right heart function in patients undergoing aortic valve replacement for aortic stenosis. Anesth Analg. 2004;98:891–902, table of contentsCrossRefGoogle Scholar
  64. 64.
    Apitz C, Honjo O, Friedberg MK, Assad RS, Van Arsdell G, Humpl T, Redington AN. Beneficial effects of vasopressors on right ventricular function in experimental acute right ventricular failure in a rabbit model. Thorac Cardiovasc Surg. 2012;60:17–23.CrossRefGoogle Scholar
  65. 65.
    Chang JC, Sawa Y, Ohtake S, Fukushima N, Nishimura M, Kagizaki K, Ohata T, Yamaguchi T, Matsuda H. Hemodynamic effect of inhaled nitric oxide in dilated cardiomyopathy patients on LVAD support. ASAIO J. 1997;43:M418–21.CrossRefGoogle Scholar
  66. 66.
    Argenziano M, Choudhri AF, Moazami N, Rose EA, Smith CR, Levin HR, Smerling AJ, Oz MC. Randomized, double-blind trial of inhaled nitric oxide in LVAD recipients with pulmonary hypertension. Ann Thorac Surg. 1998;65:340–5.CrossRefGoogle Scholar
  67. 67.
    Lovich MA, Pezone MJ, Wakim MG, Denton RJ, Maslov MY, Murray MR, Tsukada H, Agnihotri AK, Roscigno RF, Gamero LG, Gilbert RJ. Inhaled nitric oxide augments left ventricular assist device capacity by ameliorating secondary right ventricular failure. ASAIO J. 2015;61:379–85.CrossRefGoogle Scholar
  68. 68.
    Klodell CT Jr, Morey TE, Lobato EB, Aranda JM Jr, Staples ED, Schofield RS, Hess PJ, Martin TD, Beaver TM. Effect of sildenafil on pulmonary artery pressure, systemic pressure, and nitric oxide utilization in patients with left ventricular assist devices. Ann Thorac Surg. 2007;83:68–71. discussion 71CrossRefGoogle Scholar
  69. 69.
    Hamdan R, Mansour H, Nassar P, Saab M. Prevention of right heart failure after left ventricular assist device implantation by phosphodiesterase 5 inhibitor. Artif Organs. 2014;38:963–7.CrossRefGoogle Scholar
  70. 70.
    Najjar SS, Slaughter MS, Pagani FD, Starling RC, McGee EC, Eckman P, Tatooles AJ, Moazami N, Kormos RL, Hathaway DR, Najarian KB, Bhat G, Aaronson KD, Boyce SW, Investigators HBTAT. An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J Heart Lung Transplant. 2014;33:23–34.CrossRefGoogle Scholar
  71. 71.
    Stulak JM, Sharma S, Maltais S. Management of pump thrombosis in patients with left ventricular assist devices. Am J Cardiovasc Drugs. 2015;15:89–94.CrossRefGoogle Scholar
  72. 72.
    Teuteberg JJ, Slaughter MS, Rogers JG, McGee EC, Pagani FD, Gordon R, Rame E, Acker M, Kormos RL, Salerno C, Schleeter TP, Goldstein DJ, Shin J, Starling RC, Wozniak T, Malik AS, Silvestry S, Ewald GA, Jorde UP, Naka Y, Birks E, Najarian KB, Hathaway DR, Aaronson KD, ADVANCE Trial Investigators. The HVAD left ventricular assist device: risk factors for neurological events and risk mitigation strategies. JACC Heart Fail. 2015;3:818–28.CrossRefGoogle Scholar
  73. 73.
    VanderPluym JH, Robertson CM, Joffe AR, Conway J, Rebeyka IM, Ross DB, Garcia Guerra G, Al Aklabi MM, Buchholz H. Neurologic, neurocognitive, and functional outcomes in children under 6 years treated with the Berlin Heart Excor Ventricular Assist Device. ASAIO J. 2017b;63:207–15.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PediatricsHeart InstituteAuroraUSA
  2. 2.Heart Failure ProgramUniversity of Colorado HospitalAuroraUSA

Personalised recommendations