Small-Signal Stability of a Power System Integrated with an MTDC Network for the Wind Power Transmission

  • Wenjuan Du
  • Haifeng Wang
  • Siqi Bu


As it is introduced in Chap.  1, small-signal stability of an AC power system integrated with a multi-terminal DC (MTDC) network for the wind power transmission is determined by the dynamic interactions between the VSCs and synchronous generators (SGs). The dynamic interactions are through both the MTDC network and AC grid. Hence, the small-signal stability of an MTDC/AC power system is a complicated issue, which is addressed in this chapter by focusing on the following three particular aspects.


  1. 1.
    Wang XF, Song YH, Irving M (2011) Modern power systems analysis. Springer, BerlinGoogle Scholar
  2. 2.
    Wang HF, Du WJ (2016) Analysis and damping control of power system low-frequency oscillations. Springer, New YorkCrossRefGoogle Scholar
  3. 3.
    Seyranian AP (1993) Sensitivity analysis of multiple eigenvalues. Mech Struct Mach 21(2):261–284MathSciNetCrossRefGoogle Scholar
  4. 4.
    Padiyar KR (1996) Power system dynamics stability and control. Wiley, New YorkGoogle Scholar
  5. 5.
    Dobson I, Zhang J, Greene S, Engdahl H, Sauer PW (2001) Is strong resonance a precursor to power system oscillations. IEEE Trans Circuits Syst I Fundam Theory Appl 48(3):340–349CrossRefGoogle Scholar
  6. 6.
    Padiyar KR, SaiKumar HV (2006) Investigations on strong resonance in multimachine power systems with STATCOM supplementary modulation controller. IEEE Trans Power Syst 21(2):754–762CrossRefGoogle Scholar
  7. 7.
    Rogers G (2000) Power system oscillations. MA Kluwer, NorwellCrossRefGoogle Scholar
  8. 8.
    Li SH, Haskew TA (2012) Optimal and direct-current vector control of direct-driven PMSG wind turbines. IEEE Trans Power Electron 27(5):2325–2337CrossRefGoogle Scholar
  9. 9.
    Lu W, Ooi BT (2003) Optimal acquisition and aggregation of offshore wind power by multi terminal voltage-source HVDC. IEEE Trans Power Del 18(1):201–206CrossRefGoogle Scholar
  10. 10.
    Dierckxsens C, Srivastava K, Reza M, Cole S, Beerten J, Belmans R (2012) A distributed DC voltage control method for VSC MTDC systems. Elect Power Syst Res 82:54–58CrossRefGoogle Scholar
  11. 11.
    Rouzbehi K, Miranian A, Candela JI, Luna A, Rodriguez P (2015) A generalized voltage droop strategy for control of multiterminal DC grids. IEEE Trans Ind Appl 51(1):607–618CrossRefGoogle Scholar
  12. 12.
    Anderson PM, Agrawal BL, Van Ness JE (1990) Subsynchronous proximity in power systems. IEEE Press, New YorkGoogle Scholar
  13. 13.
    Haileselassie TM, Uhlen K (2012) Impact of DC line voltage drops on power flow of MTDC using droop control. IEEE Trans Power Syst 27(3):1441–1449CrossRefGoogle Scholar
  14. 14.
    Chaudhuri NR, Majumder R, Chaudhuri B (2013) System frequency support through multi-terminal DC (MTDC) grids. IEEE Trans Power Syst 28(1):347–356CrossRefGoogle Scholar
  15. 15.
    Anderson PM, Agrawal BL, Van Ness JE (1999) Subsynchronous resonance in power systems. Wiley, IEEE Press, New YorkCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Wenjuan Du
    • 1
  • Haifeng Wang
    • 1
  • Siqi Bu
    • 2
  1. 1.School of Electrical and Electronic EngineeringNorth China Electric Power UniversityBeijingChina
  2. 2.Department of Electrical EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong

Personalised recommendations