Advertisement

Smooth Goodness of Fit Tests

  • Mayer Alvo
  • Philip L. H. Yu
Chapter
Part of the Springer Series in the Data Sciences book series (SSDS)

Abstract

Goodness of fit problems have had a long history dating back to Pearson (1900). Such problems are concerned with testing whether or not a set of observed data emanate from a specified distribution. For example, suppose we would like to test the hypothesis that a set of n observations come from a standard normal distribution.

References

  1. Adkins, L. and Fligner, M. (1998). A non-iterative procedure for maximum likelihood estimation of the parameters of Mallows’ model based on partial rankings. Communications in Statistics: Theory and Methods, 27(9):2199–2220.MathSciNetCrossRefGoogle Scholar
  2. Alvo, M. and Cabilio, P. (2000). Calculation of hypergeometric probabilities using Chebyshev polynomials. The American Statistician, 54:141–144.Google Scholar
  3. Alvo, M. and Yu, P. L. H. (2014). Statistical Methods for Ranking Data. Springer.CrossRefGoogle Scholar
  4. Asmussen, S., Jensen, J., and Rojas-Nandayapa, L. (2016). Exponential family techniques for the lognormal left tail. Scandinavian Journal of Statistics, 43:774–787.MathSciNetCrossRefGoogle Scholar
  5. Beckett, L. A. (1993). Maximum likelihood estimation in Mallows’ model using partially ranked data. In Fligner, M. A. and Verducci, J. S., editors, Probability Models and Statistical Analyses for Ranking Data, pages 92–108. Springer-Verlag.Google Scholar
  6. Busse, L. M., Orbanz, P., and Buhmann, J. M. (2007). Cluster analysis of heterogeneous rank data. In Proceedings of the 24th International Conference on Machine Learning, pages 113–120.Google Scholar
  7. Critchlow, D. (1985). Metric Methods for Analyzing Partially Ranked Data. Springer-Verlag: New York.CrossRefGoogle Scholar
  8. Critchlow, D. and Verducci, J. (1992). Detecting a trend in paired rankings. Applied Statistics, 41:17–29.CrossRefGoogle Scholar
  9. Critchlow, D. E., Fligner, M. A., and Verducci, J. S. (1991). Probability models on rankings. Journal of Mathematical Psychology, 35:294–318.MathSciNetCrossRefGoogle Scholar
  10. Diaconis, P. (1988a). Group Representations in Probability and Statistics. Institute of Mathematical Statistics, Hayward.Google Scholar
  11. Efron, B. (1981). Nonparametric standard errors and confidence intervals. The Canadian Journal of Statistics, 9(2):139–158.MathSciNetCrossRefGoogle Scholar
  12. Feigin, P. D. (1993). Modelling and analysing paired ranking data. In Fligner, M. A. and Verducci, J. S., editors, Probability Models and Statistical Analyses for Ranking Data, pages 75–91. Springer-Verlag.Google Scholar
  13. Feller, W. (1968). An Introduction to Probability Theory and Its Applications, volume I. John Wiley & Sons, Inc, New York, third edition.Google Scholar
  14. Fligner, M. A. and Verducci, J. S. (1986). Distance based ranking models. Journal of the Royal Statistical Society Series B, 48(3):359–369.MathSciNetzbMATHGoogle Scholar
  15. Kendall, M. and Stuart, A. (1979). The Advanced Theory of Statistics, volume 2. Griffin, London, fourth edition.Google Scholar
  16. Lancaster, H. (1953). A reconciliation of chi square from metrical and enumerative aspects. Sankhya, 13:1–10.MathSciNetzbMATHGoogle Scholar
  17. Lee, P. H. and Yu, P. L. H. (2012). Mixtures of weighted distance-based models for ranking data with applications in political studies. Computational Statistics and Data Analysis, 56:2486–2500.MathSciNetCrossRefGoogle Scholar
  18. Mallows, C. L. (1957). Non-null ranking models. I. Biometrika, 44:114–130.MathSciNetCrossRefGoogle Scholar
  19. Marden, J. I. (1995). Analyzing and Modeling Rank Data. Chapman Hall, New York.zbMATHGoogle Scholar
  20. Neyman, J. (1937). Smooth test for goodness of fit. Skandinavisk Aktuarietidskrift, 20:149–199.zbMATHGoogle Scholar
  21. Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine, pages 157–175.CrossRefGoogle Scholar
  22. Qian, Z. and Yu, P. L. H. (2018). Weighted distance-based models for ranking data using the r package rankdist. Journal of Statistical Software, page Forthcoming.Google Scholar
  23. Ralston, A. (1965). A First Course in Numerical Analysis. McGraw Hill, New York.zbMATHGoogle Scholar
  24. Rayner, J. C. W., Best, D. J., and Thas, O. (2009a). Generalised smooth tests of goodness of fit. Journal of Statistical Theory and Practice, pages 665–679.MathSciNetCrossRefGoogle Scholar
  25. Rayner, J. C. W., Thas, O., and Best, D. J. (2009b). Smooth Tests of Goodness of Fit Using R. John Wiley and Sons, 2nd edition.Google Scholar
  26. Serfling, Robert, J. (2009). Approximating Theorems of Mathematical Statistics. John Wiley and Sons.Google Scholar
  27. Siegmund, D. (1976). Importance sampling in the Monte Carlo study of sequential tests. The Annals of Statistics, 4(4):673–684.MathSciNetCrossRefGoogle Scholar
  28. Yu, P. L. H. and Xu, H. (2018). Rank aggregation using latent-scale distance-based models. Statistics and Computing, page Forthcoming.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mayer Alvo
    • 1
  • Philip L. H. Yu
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of OttawaOttawaCanada
  2. 2.Department of Statistics and Actuarial ScienceUniversity of Hong KongHong KongChina

Personalised recommendations