Advertisement

Approximately Propagation Complete and Conflict Propagating Constraint Encodings

  • Rüdiger EhlersEmail author
  • Francisco Palau Romero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10929)

Abstract

The effective use of satisfiability (SAT) solvers requires problem encodings that make good use of the reasoning techniques employed in such solvers, such as unit propagation and clause learning. Propagation completeness has been proposed as a useful property for constraint encodings as it maximizes the utility of unit propagation. Experimental results on using encodings with this property in the context of satisfiability modulo theory (SMT) solving have however remained inconclusive, as such encodings are typically very large, which increases the bookkeeping work of solvers.

In this paper, we introduce approximate propagation completeness and approximate conflict propagation as novel SAT encoding property notions. While approximate propagation completeness is a generalization of classical propagation completeness, (approximate) conflict propagation is a new concept for reasoning about how early conflicts can be detected by a SAT solver. Both notions together span a hierarchy of encoding quality choices, with classical propagation completeness as a special case. We show how to compute approximately propagation complete and conflict propagating constraint encodings with a minimal number of clauses using a reduction to MaxSAT. To evaluate the effect of such encodings, we give results on applying them in a case study.

Notes

Acknowledgements

This work was supported by DFG grant EH 481/1-1 and the Institutional Strategy of the University of Bremen, funded by the German Excellence Initiative. The authors want to thank Armin Biere for early feedback on the propagation quality notions defined in this work and Erika Abraham for proposing MaxSAT solvers as reasoning backend.

References

  1. 1.
    Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: A parametric approach for smaller and better encodings of cardinality constraints. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 80–96. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40627-0_9CrossRefGoogle Scholar
  2. 2.
    Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality constraints of bounded size. In: Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 2677–2683 (2015). http://ijcai.org/Abstract/15/379
  3. 3.
    Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks: a theoretical and empirical study. Constraints 16(2), 195–221 (2011).  https://doi.org/10.1007/s10601-010-9105-0MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Babka, M., Balyo, T., Cepek, O., Gurský, S., Kucera, P., Vlcek, V.: Complexity issues related to propagation completeness. Artif. Intell. 203, 19–34 (2013).  https://doi.org/10.1016/j.artint.2013.07.006MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality reduction. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 341–355. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24605-3_26CrossRefzbMATHGoogle Scholar
  6. 6.
    Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT race 2010. FMV Report Series Technical report 10/1, Johannes Kepler University, Linz, Austria (2010)Google Scholar
  7. 7.
    Bjork, M.: Successful SAT encoding techniques. J. Satisfiability Boolean Model. Comput. 7, 189–201 (2009)Google Scholar
  8. 8.
    Bordeaux, L., Marques-Silva, J.: Knowledge compilation with empowerment. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 612–624. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27660-6_50CrossRefGoogle Scholar
  9. 9.
    Brain, M., Hadarean, L., Kroening, D., Martins, R.: Automatic generation of propagation complete SAT encodings. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 536–556. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49122-5_26CrossRefGoogle Scholar
  10. 10.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986).  https://doi.org/10.1109/TC.1986.1676819CrossRefzbMATHGoogle Scholar
  11. 11.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press (2001). http://books.google.de/books?id=Nmc4wEaLXFEC
  12. 12.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24605-3_37CrossRefGoogle Scholar
  13. 13.
    Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT 2(1–4), 1–26 (2006). http://jsat.ewi.tudelft.nl/content/volume2/JSAT2_1_Een.pdf
  14. 14.
    Franco, J., Martin, J.: A history of satisfiability. In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, chap. 1, pp. 3–74. IOS Press (2009)Google Scholar
  15. 15.
    Gwynne, M., Kullmann, O.: Towards a theory of good SAT representations. CoRR abs/1302.4421 (2013). http://arxiv.org/abs/1302.4421
  16. 16.
    Gwynne, M., Kullmann, O.: Generalising unit-refutation completeness and SLUR via nested input resolution. J. Autom. Reasoning 52(1), 31–65 (2014).  https://doi.org/10.1007/s10817-013-9275-8MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Inala, J.P., Singh, R., Solar-Lezama, A.: Synthesis of domain specific CNF encoders for bit-vector solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 302–320. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40970-2_19CrossRefzbMATHGoogle Scholar
  18. 18.
    Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31365-3_28CrossRefGoogle Scholar
  19. 19.
    Kučera, P., Savický, P., Vorel, V.: A lower bound on CNF encodings of the at-most-one constraint. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 412–428. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66263-3_26CrossRefzbMATHGoogle Scholar
  20. 20.
    Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, chap. 19, pp. 613–631. IOS Press (2009)Google Scholar
  21. 21.
    Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching heuristic for SAT solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 123–140. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40970-2_9CrossRefzbMATHGoogle Scholar
  22. 22.
    Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formulas. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 102–117. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39611-3_14CrossRefGoogle Scholar
  23. 23.
    Petke, J.: Bridging Constraint Satisfaction and Boolean Satisfiability. AIFTA. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21810-6CrossRefzbMATHGoogle Scholar
  24. 24.
    Roussel, O., Manquinho, V.: Pseudo-boolean and cardinality constraints. In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, chap. 22, pp. 695–733. IOS Press (2009)Google Scholar
  25. 25.
    Saikko, P., Berg, J., Järvisalo, M.: LMHS: A SAT-IP hybrid MaxSAT solver. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40970-2_34CrossRefzbMATHGoogle Scholar
  26. 26.
    Somenzi, F.: CUDD: CU Decision Diagram package release 3.0.0 (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of BremenBremenGermany

Personalised recommendations