Circuit-Based Search Space Pruning in QBF
Conference paper
First Online:
- 2 Citations
- 691 Downloads
Abstract
This paper describes the algorithm implemented in the QBF solver CQESTO, which has placed second in the non-CNF track of the last year’s QBF competition. The algorithm is inspired by the CNF-based solver QESTO. Just as QESTO, CQESTO invokes a SAT solver in a black-box fashion. However, it directly operates on the circuit representation of the formula. The paper analyzes the individual operations that the solver performs.
Keywords
Quantified Boolean Formulas (QBF) RAReQS Quabbe Subformula Prenex Form
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Notes
Acknowledgments
This work was supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013. The author would like to thank Nikolaj Bjørner and João Marques-Silva for the helpful discussions on the topic.
References
- 1.Ansótegui, C., Gomes, C.P., Selman, B.: The Achilles’ heel of QBF. In: National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference (AAAI), pp. 275–281 (2005)Google Scholar
- 2.Balabanov, V., Jiang, J.-H.R., Scholl, C., Mishchenko, A., Brayton, R.K.: 2QBF: challenges and solutions. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 453–469. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_28CrossRefzbMATHGoogle Scholar
- 3.Benedetti, M., Mangassarian, H.: QBF-based formal verification: experience and perspectives. J. Satisfiability Bool. Model. Comput. (JSAT) 5(1–4), 133–191 (2008)MathSciNetzbMATHGoogle Scholar
- 4.Bjørner, N., Janota, M.: Playing with quantified satisfaction. In: International Conferences on Logic for Programming LPAR-20, Short Presentations, vol. 35, pp. 15–27. EasyChair (2015)Google Scholar
- 5.CQESTO website. http://sat.inesc-id.pt/~mikolas/sw/cqesto/res.html
- 6.Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37CrossRefGoogle Scholar
- 7.Farzan, A., Kincaid, Z.: Strategy synthesis for linear arithmetic games. In: Proceedings of the ACM on Programming Languages 2 (POPL), pp. 61:1–61:30, December 2017. https://doi.org/10.1145/3158149CrossRefGoogle Scholar
- 8.Goultiaeva, A., Seidl, M., Biere, A.: Bridging the gap between dual propagation and CNF-based QBF solving. In: Design, Automation & Test in Europe (DATE), pp. 811–814 (2013)Google Scholar
- 9.Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating proofs and strategies for both true and false QBF formulas. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 546–553 (2011)Google Scholar
- 10.Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_10CrossRefGoogle Scholar
- 11.Janota, M.: Towards generalization in QBF solving via machine learning. In: AAAI Conference on Artificial Intelligence (2018)Google Scholar
- 12.Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. Artif. Intell. 234, 1–25 (2016)MathSciNetCrossRefGoogle Scholar
- 13.Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 230–244. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21581-0_19CrossRefGoogle Scholar
- 14.Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: International Joint Conference on Artificial Intelligence (IJCAI) (2015)Google Scholar
- 15.Janota, M., Marques-Silva, J.: An Achilles’ heel of term-resolution. In: Conference on Artificial Intelligence (EPIA), pp. 670–680 (2017)CrossRefGoogle Scholar
- 16.Jordan, C., Klieber, W., Seidl, M.: Non-CNF QBF solving with QCIR. In: Proceedings of BNP (Workshop) (2016)Google Scholar
- 17.Kleine Büning, H., Bubeck, U.: Theory of quantified Boolean formulas. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 735–760. IOS Press (2009)Google Scholar
- 18.Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_12CrossRefGoogle Scholar
- 19.Manna, Z., Waldinger, R.: The Logical Basis for Computer Programming, vol. 2. Addison-Wesley, Reading (1985)Google Scholar
- 20.Marques Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)MathSciNetCrossRefGoogle Scholar
- 21.Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 298–313. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_19CrossRefGoogle Scholar
- 22.QBF Eval 2017 (2017). http://www.qbflib.org/event_page.php?year=2017
- 23.Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: Formal Methods in Computer-Aided Design, FMCAD, pp. 136–143 (2015)Google Scholar
- 24.Reynolds, A., King, T., Kuncak, V.: Solving quantified linear arithmetic by counterexample-guided instantiation. Formal Methods Syst. Des. 51(3), 500–532 (2017). https://doi.org/10.1007/s10703-017-0290-yCrossRefzbMATHGoogle Scholar
- 25.Tentrup, L.: Non-prenex QBF solving using abstraction. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 393–401. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_24CrossRefGoogle Scholar
- 26.Tseitin, G.S.: On the complexity of derivations in the propositional calculus. In: Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic Part II (1968)Google Scholar
- 27.Tu, K.-H., Hsu, T.-C., Jiang, J.-H.R.: QELL: QBF reasoning with extended clause learning and levelized SAT solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 343–359. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_25CrossRefGoogle Scholar
- 28.Zhang, L.: Solving QBF by combining conjunctive and disjunctive normal forms. In: National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference (AAAI) (2006)Google Scholar
- 29.Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: International Conference On Computer Aided Design (ICCAD), pp. 442–449 (2002)Google Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018