Cystic Fibrosis

  • Daniel PeckhamEmail author
  • Paul Whitaker


Cystic Fibrosis (CF) is an autosomal recessive disease caused by genetic mutations on chromosome 7. The defective gene results in abnormalities in the production and function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. In healthy cells CFTR acts as a chloride channel and a regulator of sodium, chloride and bicarbonate transport. The resulting reduction or absence of CFTR expression in patients with CF results in impaired chloride transport, enhanced sodium absorption, dehydration of airway surface liquid, and deficiency in mucociliary clearance. Viscid secretions develop in the lung as well as in the liver, bowel, and pancreas. These changes result is a multisystem disease that includes progressive bronchiectasis, pancreatic insufficiency, liver disease, and CF-related diabetes. The diagnosis is often suspected in infancy due to bowel complications, such as meconium ileus, recurrent chest infections, or failure to thrive. In the UK there is a national screening programme using the standard heel prick test to measure immunoreactive trypsinogen (IRT). The diagnosis is confirmed by performing sweat tests and CF genetics. Median survival has improved to 40 years due to a multidisciplinary approach with regards to nutrition, airway clearance, and antibiotic therapy. Over recent years there have been several important advances in the development of drugs that directly treat the basic defect.


Cystic fibrosis Cystic fibrosis transmembrane conductance regulator CFTR Sweat test Bronchiectasis 


  1. 1.
    Elborn JS, Bell SC, Madge SL, Burgel PR, Castellani C, Conway S, et al. Report of the European Respiratory Society/European Cystic Fibrosis Society task force on the care of adults with cystic fibrosis. Eur Respir J. 2015;47(2):420–8. PubMed PMID: 264536.CrossRefPubMedGoogle Scholar
  2. 2.
    Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, et al. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989;245(4922):1073–80. PubMed PMID: 2570460.CrossRefPubMedGoogle Scholar
  3. 3.
    Green A, Isherwood D, Pollitt R. A laboratory guide to newborn screening in the UK for cystic fibrosis. 4th ed. London: UK National Screening Committee; 2014.Google Scholar
  4. 4.
    Farrell PM, Rosenstein BJ, White TB, Accurso FJ, Castellani C, Cutting GR, et al. Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic Fibrosis Foundation consensus report. J Pediatr. 2008;153(2):S4–S14. PubMed PMID: 18639722. Pubmed Central PMCID: PMC2810958.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mayell SJ, Munck A, Craig JV, Sermet I, Brownlee KG, Schwarz MJ, et al. A European consensus for the evaluation and management of infants with an equivocal diagnosis following newborn screening for cystic fibrosis. J Cyst Fibros. 2009;8(1):71–8. PubMed PMID: 18957277.CrossRefPubMedGoogle Scholar
  6. 6.
    De Boeck K, Derichs N, Fajac I, de Jonge HR, Bronsveld I, Sermet I, et al. New clinical diagnostic procedures for cystic fibrosis in Europe. J Cyst Fibros. 2011;10(Suppl 2):S53–66. PubMed PMID: 21658643.CrossRefPubMedGoogle Scholar
  7. 7.
    Flight WG, Bright-Thomas RJ, Tilston P, Mutton KJ, Guiver M, Morris J, et al. Incidence and clinical impact of respiratory viruses in adults with cystic fibrosis. Thorax. 2014;69(3):247–53. PubMed PMID: 24127019.CrossRefPubMedGoogle Scholar
  8. 8.
    Courtney JM, Bradley J, McCaughan J, O'Connor TM, Shortt C, Bredin CP, et al. Predictors of mortality in adults with cystic fibrosis. Pediatr Pulmonol. 2007;42(6):525–32. PubMed PMID: 17469153.CrossRefPubMedGoogle Scholar
  9. 9.
    Jones AM, Dodd ME, Govan JR, Barcus V, Doherty CJ, Morris J, et al. Burkholderia cenocepacia and Burkholderia multivorans: influence on survival in cystic fibrosis. Thorax. 2004;59(11):948–51. PubMed PMID: 15516469. Pubmed Central PMCID: 1746874.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yang C, Chilvers M, Montgomery M, Nolan SJ. Dornase alfa for cystic fibrosis. Cochrane Database Syst Rev. 2016;4:CD001127. PubMed PMID:27043279.PubMedGoogle Scholar
  11. 11.
    Nolan SJ, Thornton J, Murray CS, Dwyer T. Inhaled mannitol for cystic fibrosis. Cochrane Database Syst Rev. 2015;10:CD008649. PubMed PMID: 26451533.Google Scholar
  12. 12.
    Principi N, Blasi F, Esposito S. Azithromycin use in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis. 2015;34(6):1071–9. PubMed PMID: 25686729.CrossRefPubMedGoogle Scholar
  13. 13.
    Koloušková S, Zemková D, Bartošová J, Skalická V, Šumník Z, Vávrová V, et al. Low-dose insulin therapy in patients with cystic fibrosis and early-stage insulinopenia prevents deterioration of lung function: a 3-year prospective study. J Pediatr Endocrinol Metab. 2011;24(7–8):449–54. PubMed PMID: 21932580. English.PubMedGoogle Scholar
  14. 14.
    Sermet-Gaudelus I, Bianchi ML, Garabedian M, Aris RM, Morton A, Hardin DS, et al. European cystic fibrosis bone mineralisation guidelines. J Cyst Fibros. 2011;10(Suppl 2):S16–23. PubMed PMID: 21658635.CrossRefPubMedGoogle Scholar
  15. 15.
    Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, Dřevínek P, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. 2011;365(18):1663–72. PubMed PMID: 22047557. Pubmed Central PMCID: PMC3230303.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M, et al. Lumacaftor-Ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med. 2015;373(3):220–31. PubMed PMID: 25981758.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Leeds Centre for Respiratory MedicineSt James’s University HospitalLeedsUK

Personalised recommendations