Advertisement

LiDAR Applications for Energy Industry

  • Leyre Torre-TojalEmail author
  • Jose Manuel Lopez-Guede
  • Manuel Graña
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 771)

Abstract

The first step for an optimum energy consumption reducing planning supposes the accurate estimation of the primary sources. For this purpose, Light Detection and Ranging (LiDAR) remote sensing technique is being widely applied because its ability to collect huge amounts of data with good accuracy. This study focuses on the application of this technology to the improvement of the assessment of wind, solar and biomass energies. In the case of the biomass, a proof of concept of the estimation for the Pinus Radiata specie in the Arratia-Nervión region (Spain) has been explained. Due to the promising results obtained with this technique, LiDAR has stand out as a powerful and versatile tool for energy consumption reduction in the industrial sector.

Keywords

LiDAR Energy industry Remote sensing Biomass 

References

  1. 1.
    U.S. Energy Information Administration (EIA): International Energy Outlook 2013 (2013)Google Scholar
  2. 2.
    International Energy Agency: Energy Technology Transitions for Industry. Strategies for the Next Industrial Revolution (2016)Google Scholar
  3. 3.
    Karray F.O., De Silva C.: Soft Computing and Intelligent Systems Design. Pearson Education Limited (2004)Google Scholar
  4. 4.
    Reutebuch, S.E., McGaughey, R.J., Andersen, H., Carson, W.W.: Accuracy of a high-resolution lidar terrain model under a conifer forest canopy. Can. J. Remote Sens. 29(5), 527–535 (2003)CrossRefGoogle Scholar
  5. 5.
    Eitel, J.U.H., Höfle, B., Vierling, L.A., Abellán, A., Asner, G.P., Deems, J.S., Glennie, C.L., Joerg, P.C., LeWinter, A.L., Maney, T.S., Morton, D.C.: Vierling, Kerri T.: Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences. Remote Sens. Environ. 186, 372–392 (2016)CrossRefGoogle Scholar
  6. 6.
    McKendry, P.: Energy production from biomass (Part 1): overview of biomass. Biores. Technol. 83(1), 37–46 (2002)CrossRefGoogle Scholar
  7. 7.
    Baltsavias, E.P.: Airborne laser scanning: basic relations and formulas. ISPRS J. Photogramm. Remote Sens. 54, 199–214 (1999)CrossRefGoogle Scholar
  8. 8.
    Lohani, B., Ghosh, S.: Airborne LiDAR technology: a review of data collection and processing systems. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 87, 567–579 (2017)CrossRefGoogle Scholar
  9. 9.
    Red Eléctrica de España: The Spanish Electricity System, Preliminary Report 2016 (2016)Google Scholar
  10. 10.
    Khahro, S.F., Tabbassum, K., Soomro, A.M.: Evaluation of wind power production prospective and Weibull parameter estimation methods for Babaurband, Sindh Pakistan. Energy Convers. Manag. 78, 956–967 (2014)CrossRefGoogle Scholar
  11. 11.
    Nouri, A., Babram, M.A., Elwarraki, E., Enzili, M.: Moroccan wind farm potential feasibility. Case Study. Energy Convers. Manag. 122, 39–51 (2016)CrossRefGoogle Scholar
  12. 12.
    Kim, D., Kim, T., Oh, G., Huh, J., Ko, K.: A comparison of ground-based LiDAR and met mast wind measurements for wind resource assessment over various terrain conditions. J. Wind Eng. Ind. Aerodyn. 158, 109–121 (2016)CrossRefGoogle Scholar
  13. 13.
    Li, J., Yu, X.: LiDAR technology for wind energy potential assessment: Demonstration and validation at a site around Lake Erie. Energy Convers. Manag. 144, 252–261 (2017)CrossRefGoogle Scholar
  14. 14.
    Martínez-Rubio, A., Sanz-Adan, F., Santamaría-Peña, J., Martínez, A.: Evaluating solar irradiance over facades in high building cities, based on LiDAR technology. Appl. Energy 183, 133–147 (2016)CrossRefGoogle Scholar
  15. 15.
    Lingfors, D., Bright, J.M., Engerer, N.A., Ahlberg, J., Killinger, S., Widén, J.: Comparing the capability of low- and high-resolution LiDAR data with application to solar resource assessment, roof type classification and shading analysis. Appl. Energy 205, 1216–1230 (2017)CrossRefGoogle Scholar
  16. 16.
    Liang, C., Hao, X., Shuyi, L., Yanming, C., Fangli, Z., Manchun, L.: Use of LiDAR for calculating solar irradiance on roofs and façades of buildings at city scale: Methodology, validation, and analysis. ISPRS J. Photogram. Remote Sens. 138, 12–29 (2018)CrossRefGoogle Scholar
  17. 17.
    Parresol, B.R.: Assessing tree and stand biomass: a review with examples and critical comparisons. For. Sci. 45(4), 573–593 (1999)Google Scholar
  18. 18.
    Moore, J.R.: Allometric equations to predict the total above-ground biomass of radiata pine trees. Ann. Sci. 67(8), 806 (2010)CrossRefGoogle Scholar
  19. 19.
    Shao, G., Shao, G., Gallion, J., Saunders, M.R., Frankenberger, J.R., Songlin, F.: Improving Lidar-based aboveground biomass estimation of temperate hardwood forests with varying site productivity. Remote Sens. Environ. 204, 872–882 (2018)CrossRefGoogle Scholar
  20. 20.
    Spatial Data Infrastructure of the Basque Government. ftp://ftp.geo.euskadi.eus/lidar/LIDAR_2012_ETRS89/LAS/. Accessed 12 March 2018Google Scholar
  21. 21.
    Canga, E., Dieguez-Aranda, I., Afif-Khouri, E., Cámara-Obregón, A.: Above-ground biomass equations for Pinus radiata D. Don in Asturias. For. Syst. (INIA) 22(3), 408–415 (2013)CrossRefGoogle Scholar
  22. 22.
    Næsset, E., Gobakken, T., Solberg, S., Gregoire, T.G., Nelson, R., Stähl, G., Weydahl, D., et al.: Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: a case study from a boreal forest area. Remote Sens. Environ. 115, 3599–3614 (2011)CrossRefGoogle Scholar
  23. 23.
    Næsset, E., Gobakken, T.: Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens. Environ. 112(6), 3079–3090 (2008)CrossRefGoogle Scholar
  24. 24.
    Valbuena, M.A.: Determinación de variables forestales de masa y de árboles individuales mediante delineación de copas a partir de datos LiDAR aerotransportado (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Leyre Torre-Tojal
    • 1
    Email author
  • Jose Manuel Lopez-Guede
    • 2
    • 4
  • Manuel Graña
    • 3
    • 4
  1. 1.Department of Mining and Metallurgical Engineering and Materials Science, Faculty of EngineeringUniversity of the Basque Country (UPV/EHU)Vitoria-GasteizSpain
  2. 2.Department of Systems Engineering and Automatic Control, Faculty of EngineeringUniversity of the Basque Country (UPV/EHU)Vitoria-GasteizSpain
  3. 3.Department of Computer Science and Artificial Intelligence, Faculty of Computer ScienceUniversity of the Basque Country (UPV/EHU)Donostia-San SebastianSpain
  4. 4.Computational Intelligence GroupUniversity of the Basque Country (UPV/EHU)LeioaSpain

Personalised recommendations