Advertisement

Neural Visualization for the Analysis of Energy and Water Consumptions in the Automotive Industry

  • Raquel Redondo
  • Álvaro Herrero
  • Emilio Corchado
  • Javier Sedano
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 771)

Abstract

This study presents the application of neural models to a real-life problem in order to study the energy and water consumptions of an automotive multinational company for resources saving and environment protection. The aim is to visually and naturally analyse different consumptions data for a whole year, month by month, from factories and locations worldwide where different kinds of products are produced. The data are studied in order to see whether the geographical location, the month of the year or the technology used in each factory are relevant in terms of consumptions and then take actions for a greener production. The consumptions dataset is analysed using different neural projection models: Principal Component Analysis and Cooperative Maximum-Likelihood Hebbian Learning. This unsupervised dimensionality reduction techniques have been applied, and subsequent interesting conclusions are obtained.

Keywords

Soft computing Artificial neural networks Exploratory projection pursuit Industrial applications Energy consumption 

Notes

Acknowledgments

The authors would like to thank the vehicle interior manufacturer, Grupo Antolin, for its collaboration in this research.

References

  1. 1.
    San José, R., Pérez, J.L., González, R.M.: An operational realtime air quality modelling system for industrial plants. Environ. Model Softw. 22, 297–307 (2007)CrossRefGoogle Scholar
  2. 2.
    Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002)zbMATHGoogle Scholar
  3. 3.
    Platon, R., Dehkordi, V.R., Martel, J.: Hourly prediction of a building’s electricity consumption using case-based reasoning, artificial neural networks and principal component analysis. Energy Build. 92, 10–18 (2015)CrossRefGoogle Scholar
  4. 4.
    Corchado, E., Herrero, Á.: Neural visualization of network traffic data for intrusion detection. Appl. Soft Comput. 11(2), 2042–2056 (2011)CrossRefGoogle Scholar
  5. 5.
    Grupo Antolin. Accessed 03 Apr 2018. http://www.grupoantolin.com
  6. 6.
    Corchado, E., Baruque, B.: Wevos-visom: An ensemble summarization algorithm for enhanced data visualization. Neurocomputing 75(1), 171–184 (2012)CrossRefGoogle Scholar
  7. 7.
    Araya, D.B., Grolinger, K., ElYamany, H.F., Capretz, M.A.M., Bitsuamlak, G.: An ensemble learning framework for anomaly detection in building energy consumption. Energy Build. 144, 191–206 (2017)CrossRefGoogle Scholar
  8. 8.
    Garg, H., Rani, M., Sharma, S.P.: An approach for analyzing the reliability of industrial systems using soft-computing based technique. Expert Syst. Appl. 41(2), 489–501 (2014)CrossRefGoogle Scholar
  9. 9.
    Gitinavard, H., Mousavi, S.M., Vahdani, B.: Soft computing based on hierarchical evaluation approach and criteria interdependencies for energy decision-making problems: a case study. Energy 118, 556–577 (2017)CrossRefGoogle Scholar
  10. 10.
    Oja, E.: Principal components, minor components, and linear neural networks. Neural Netw. 5, 927–935 (1992)CrossRefGoogle Scholar
  11. 11.
    Oja, E.: Neural networks, principal components, and subspaces. Int. J. Neural Syst. 1, 61–68 (1989)CrossRefGoogle Scholar
  12. 12.
    Friedman, J.: Exploratory projection pursuit. J. Am. Stat. Assoc. 82(397), 249–266 (1987)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Corchado, E., MacDonald, D., Fyfe, C.: Maximum and minimum likelihood Hebbian learning for exploratory projection pursuit. Data Min. Knowl. Disc. 8(3), 203–225 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Herrero, Á., Corchado, E., Sáiz Bárcena, L., Abraham, A.: DIPKIP: a connectionist knowledge management system to identify knowledge deficits in practical cases. Computational Intelligence 26(1), 26–56 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Krömer, P., Corchado, E., Snásel, V., Platos, J., García-Hernandez, L.: Neural PCA and Maximum Likelihood Hebbian Learning on the GPU. ICANN 2, 132–139 (2012)Google Scholar
  16. 16.
    Corchado, E., Han, Y., Fyfe, C.: Structuring global responses of local filters using lateral connections. J. Exp. Theor. Artif. Intell. 15(4), 473–487 (2003)CrossRefGoogle Scholar
  17. 17.
    Seung, H., Socci, N., Lee, D.: The Rectified Gaussian Distribution. Adv. Neural. Inf. Process. Syst. 10, 350–356 (1998)Google Scholar
  18. 18.
    Vera, V., Sedano, J., Corchado, E., Redondo, R., Hernando, B., Camara, M., Laham, A., Garcia, A.E.: A hybrid system for dental milling parameters optimisation. In: 6th International Conference on Hybrid Artificial Intelligence Systems. Wroclaw, Poland HAIS 2011, Part II, LNAI 6679, 2011, pp. 437–446 (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Grupo de Inteligencia Computacional Aplicada (GICAP), Departamento de Ingeniería Civil, Escuela Politécnica Superior, Universidad de BurgosBurgosSpain
  2. 2.Departamento de Informática y Automática, Universidad de SalamancaSalamancaSpain
  3. 3.Instituto Tecnológico de Castilla y LeónBurgosSpain

Personalised recommendations