Advertisement

Lazy Reachability Checking for Timed Automata with Discrete Variables

  • Tamás TóthEmail author
  • István Majzik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10869)

Abstract

Systems and software with time dependent behavior are often formally specified using timed automata. For practical real-time systems, these specifications typically contain discrete data variables with nontrivial data flow besides real-valued clock variables. In this paper, we propose a lazy abstraction method for the location reachability problem of timed automata that can be used to efficiently control the visibility of discrete variables occurring in such specifications, this way alleviating state space explosion. The proposed abstraction refinement strategy is based on interpolation for variable assignments and symbolic backward search. We combine in a single algorithm our abstraction method with known efficient lazy abstraction algorithms for the handling of clock variables. Our experiments show that the proposed method performs favorably when compared to other lazy methods, and is suitable to significantly reduce the number of states generated during state space exploration.

Keywords

Timed automata Model checking Reachability checking Lazy abstraction Visible variables abstraction Zone abstraction Interpolation 

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994).  https://doi.org/10.1016/0304-3975(94)90010-8MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed automata verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 254–270. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36577-X_18CrossRefzbMATHGoogle Scholar
  3. 3.
    Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in zone based abstractions of timed automata. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 312–326. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24730-2_25CrossRefzbMATHGoogle Scholar
  4. 4.
    Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and interpolation. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp. 146–162. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37057-1_11CrossRefGoogle Scholar
  5. 5.
    Carioni, A., Ghilardi, S., Ranise, S.: MCMT in the land of parametrized timed automata. In: 6th International Verification Workshop (VERIFY-2010), pp. 47–64 (2010)Google Scholar
  6. 6.
    Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003).  https://doi.org/10.1145/876638.876643MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Daws, C., Tripakis, S.: Model checking of real-time reachability properties using abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0054180CrossRefGoogle Scholar
  8. 8.
    Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic abstraction refinement for timed automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 114–129. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75454-1_10CrossRefzbMATHGoogle Scholar
  9. 9.
    Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Principles of Programming Languages, pp. 58–70. ACM (2002).  https://doi.org/10.1145/503272.503279CrossRefGoogle Scholar
  10. 10.
    Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Lazy abstractions for timed automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 990–1005. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39799-8_71CrossRefGoogle Scholar
  11. 11.
    Herbreteau, F., Kini, D., Srivathsan, B., Walukiewicz, I.: Using non-convex approximations for efficient analysis of timed automata. In: Foundations of Software Technology and Theoretical Computer Science. LIPIcs, vol. 13, pp. 78–89 (2011).  https://doi.org/10.4230/LIPIcs.FSTTCS.2011.78
  12. 12.
    Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Better abstractions for timed automata. In: Logic in Computer Science, pp. 375–384. IEEE (2012).  https://doi.org/10.1109/LICS.2012.48
  13. 13.
    Hojjat, H., Rümmer, P., Subotic, P., Yi, W.: Horn clauses for communicating timed systems. In: Horn Clauses for Verification and Synthesis. EPTCS, vol. 169, pp. 39–52. Open Publishing Association (2014).  https://doi.org/10.4204/EPTCS.169.6MathSciNetCrossRefGoogle Scholar
  14. 14.
    Isenberg, T., Wehrheim, H.: Timed automata verification via IC3 with zones. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 203–218. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11737-9_14CrossRefGoogle Scholar
  15. 15.
    Kindermann, R., Junttila, T., Niemelä, I.: SMT-based induction methods for timed systems. In: Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 171–187. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33365-1_13CrossRefzbMATHGoogle Scholar
  16. 16.
    Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock explosion problem of timed automata. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 296–311. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24730-2_24CrossRefzbMATHGoogle Scholar
  17. 17.
    Morbé, G., Pigorsch, F., Scholl, C.: Fully symbolic model checking for timed automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 616–632. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22110-1_50CrossRefGoogle Scholar
  18. 18.
    Tóth, T., Hajdu, Á., Vörös, A., Micskei, Z., Majzik, I.: Theta: a framework for abstraction refinement-based model checking. In: Formal Methods in Computer Aided Design, pp. 176–179. FMCAD Inc. (2017).  https://doi.org/10.23919/FMCAD.2017.8102257
  19. 19.
    Tóth, T., Majzik, I.: Lazy reachability checking for timed automata using interpolants. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017. LNCS, vol. 10419, pp. 264–280. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65765-3_15CrossRefzbMATHGoogle Scholar
  20. 20.
    Wang, W., Jiao, L.: Difference bound constraint abstraction for timed automata reachability checking. In: Graf, S., Viswanathan, M. (eds.) FORTE 2015. LNCS, vol. 9039, pp. 146–160. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19195-9_10CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Measurement and Information SystemsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations