Advertisement

A Comparative Study of Decision Diagrams for Real-Time Model Checking

  • Omar Al-Bataineh
  • Mark ReynoldsEmail author
  • David Rosenblum
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10869)

Abstract

The timed automata model, introduced by Alur and Dill, provides a powerful formalism for describing real-time systems. Over the last two decades, several dense-time model checking tools have been developed based on that model. This paper considers the verification of a set of interesting real-time distributed protocols using dense-time model checking technology. More precisely, we model and verify the distributed timed two phase commit protocol, and two well-known benchmarks, the Token-Ring-FDDI protocol, and the CSMA/CD protocol, in three different state-of-the-art real-time model checkers: UPPAAL, RED, and Rabbit. We illustrate the use of these tools using one of the case studies. Finally, several interesting conclusions have been drawn about the performance, usability, and the capability of each tool.

References

  1. 1.
    Al-Bataineh, O.I., Reynolds, M., French, T.: Finding minimum and maximum termination time of timed automata models with cyclic behaviour. Theor. Comput. Sci. 665, 87–104 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. Comput. 104, 2–34 (1993)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for real-time systems. In: Proceedings of the 5th Annual Symposium on Logic in Computer Science, pp. 414–425 (1990)Google Scholar
  4. 4.
    Alur, R., Dill, D.: A theory of timed automata. TCS 126, 183–235 (1994)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Alur, R., Madhusudan, P.: Decision problems for timed automata: a survey. In: International School on Formal Methods for the Design of Computer, Communication and Software Systems, SFM-RT 2004, pp. 200–236 (2004)Google Scholar
  6. 6.
    Atif, M.: Analysis and verification of two-phase commit and three-phase commit protocols. In: Emerging Technologies ICET 2009, pp. 326–331 (2009)Google Scholar
  7. 7.
    Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30080-9_7CrossRefGoogle Scholar
  8. 8.
    Behrmann, G., Bouyer, P., Larsen, K.G., Radek, P.: Lower and upper bounds in zone-based abstractions of timed automata. Int. J. Softw. Tools Technol. Transf. 8, 204–215 (2006)CrossRefGoogle Scholar
  9. 9.
    Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reachability analysis using clock difference diagrams. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48683-6_30CrossRefGoogle Scholar
  10. 10.
    Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27755-2_3CrossRefzbMATHGoogle Scholar
  11. 11.
    Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Systems. Addison-Wesley, Reading (1987)Google Scholar
  12. 12.
    Beyer, D., Lewerentz, C., Noack, A.: Rabbit: a tool for BDD-based verification of real-time systems. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 122–125. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45069-6_13CrossRefGoogle Scholar
  13. 13.
    Beyer, D., Noack, A.: Can decision diagrams overcome state space explosion in real-time verification? In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003. LNCS, vol. 2767, pp. 193–208. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39979-7_13CrossRefGoogle Scholar
  14. 14.
    Bouyer, P.: Forward analysis of updatable timed automata. Formal Meth. Syst. Des. 24, 281–320 (2004)CrossRefGoogle Scholar
  15. 15.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35, 677–691 (1986)CrossRefGoogle Scholar
  16. 16.
    Davidson, S., Lee, I., Wolfe, V.: A protocol for times atomic commitment. In: Proceedings of 9th International Conference on Distributed Computing System (1989)Google Scholar
  17. 17.
    Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990).  https://doi.org/10.1007/3-540-52148-8_17CrossRefGoogle Scholar
  18. 18.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inf. Comput. 111, 394–406 (1992)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Jain, R.: FDDI Handbook: High-Speed Networking Using Fiber and Other Media. Addison-Wesley Longman Publishing Co. Inc., Boston (1994)Google Scholar
  20. 20.
    Kaynar, D., Lynch, N., Segala, R., Vaandrager, F.: Timed I/O automata: a mathematical framework for modelling and analyzing real-time systems. In: Proceedings of 24th IEEE International Real-Time Systems Symposium (RTSS 2003), pp. 166–177 (2003)Google Scholar
  21. 21.
    Larsen, K., Larsson, F., Pettersson, P., Yi, W.: Efficient verification of real-time systems: compact data structures and state-space reduction. In: Proceedings of the 18th IEEE Real-Time Systems Symposium, pp. 14–24 (1997)Google Scholar
  22. 22.
    Magee, J.: Analyzing synchronous distributed algorithms (2003)Google Scholar
  23. 23.
    Ober, I., Graf, S., Ober, I.: Validation of UML models via a mapping to communicating extended timed automata. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 127–145. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24732-6_9CrossRefGoogle Scholar
  24. 24.
    Ölveczky, P.C.: Formal modeling and analysis of a distributed database protocol in Maude. In: Proceedings of the 2008 11th IEEE International Conference on Computational Science and Engineering - Workshops, pp. 37–44 (2008)Google Scholar
  25. 25.
    Tripakis, S.: The analysis of timed systems in practice. Ph.D. thesis, Universite Joseph Fourier, Grenoble, France (1998)Google Scholar
  26. 26.
    Wang, F.: Symbolic verification of complex real-time systems with clock-restriction diagram. In: Proceedings of the IFIP TC6/WG6.1, pp. 235–250. Kluwer, B.V. (2001)Google Scholar
  27. 27.
    Yovine, S.: Kronos: a verification tool for real-time systems. Int. J. Softw. Tools Technol. Transfer 1, 123–133 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Omar Al-Bataineh
    • 1
  • Mark Reynolds
    • 2
    Email author
  • David Rosenblum
    • 1
  1. 1.National University of SingaporeSingaporeSingapore
  2. 2.University of Western AustraliaPerthAustralia

Personalised recommendations