Domain-Specific Use Cases for Knowledge-Enabled Social Media Analysis

  • Soon Jye KhoEmail author
  • Swati Padhee
  • Goonmeet Bajaj
  • Krishnaprasad Thirunarayan
  • Amit Sheth
Part of the Lecture Notes in Social Networks book series (LNSN)


Social media provides a virtual platform for users to share and discuss their daily life, activities, opinions, health, feelings, etc. Such personal accounts readily generate Big Data marked by velocity, volume, value, variety, and veracity challenges. This type of Big Data analytics already supports useful investigations ranging from research into data mining and developing public policy to actions targeting an individual in a variety of domains such as branding and marketing, crime and law enforcement, crisis monitoring and management, as well as public and personalized health management. However, using social media to solve domain-specific problem is challenging due to complexity of the domain, lack of context, colloquial nature of language, and changing topic relevance in temporally dynamic domain. In this article, we discuss the need to go beyond data-driven machine learning and natural language processing, and incorporate deep domain knowledge as well as knowledge of how experts and decision makers explore and perform contextual interpretation. Four use cases are used to demonstrate the role of domain knowledge in addressing each challenge.



We would like to thank Sarasi Lalithsena, Shweta Yadav, and Sanjaya Wijeratna for their patient and insightful reviews. We would also like to acknowledge partial support from the National Science Foundation (NSF) award: CNS-1513721: “Context-Aware Harassment Detection on Social Media,” National Institute on Drug Abuse (NIDA) Grant No. 5R01DA039454-02: “Trending: Social Media Analysis to Monitor Cannabis and Synthetic Cannabinoid Use,” National Institutes of Health (NIH) award: MH105384-01A1: “Modeling Social Behavior for Healthcare Utilization in Depression,” and Grant No. 2014-PS-PSN-00006 awarded by the Bureau of Justice Assistance. The Bureau of Justice Assistance is a component of the US Department of Justice’s Office of Justice Programs, which also includes the Bureau of Justice Statistics, the National Institute of Justice, the Office of Juvenile Justice and Delinquency Prevention, the Office for Victims of Crime, and the SMART Office. Points of view or opinions in this document are those of the authors and do not necessarily represent the official position or policies of the US Department of Justice, NSF, NIH, or NIDA.


  1. 1.
    Abel, F., Hauff, C., Houben, G.J., Stronkman, R., Tao, K.: Twitcident: fighting fire with information from social web streams. In: Proceedings of the 21st International Conference on World Wide Web, pp. 305–308. ACM, New York (2012)Google Scholar
  2. 2.
    Bach, S.H., Broecheler, M., Huang, B., Getoor, L.: Hinge-loss markov random fields and probabilistic soft logic. J. Mach. Learn. Res. 18(109), 1–67 (2017)Google Scholar
  3. 3.
    Bhatt, S.P., Purohit, H., Hampton, A., Shalin, V., Sheth, A., Flach, J.: Assisting coordination during crisis: a domain ontology based approach to infer resource needs from tweets. In: Proceedings of the 2014 ACM Conference on Web science, pp. 297–298. ACM, New York (2014)Google Scholar
  4. 4.
    Cameron, D., Smith, G.A., Daniulaityte, R., Sheth, A.P., Dave, D., Chen, L., Anand, G., Carlson, R., Watkins, K.Z., Falck, R.: Predose: a semantic web platform for drug abuse epidemiology using social media. J. Biomed. Inform. 46(6), 985–997 (2013)CrossRefGoogle Scholar
  5. 5.
    Chen, L., Wang, W., Sheth, A.P.: Are twitter users equal in predicting elections? a study of user groups in predicting 2012 us republican presidential primaries. In: International Conference on Social Informatics, pp. 379–392. Springer, Berlin (2012)Google Scholar
  6. 6.
    Craft, L.L., Perna, F.M.: The benefits of exercise for the clinically depressed. Prim. Care Companion J. Clin. Psychiatry 6(3), 104 (2004)CrossRefGoogle Scholar
  7. 7.
    Daniulaityte, R., Nahhas, R.W., Wijeratne, S., Carlson, R.G., Lamy, F.R., Martins, S.S., Boyer, E.W., Smith, G.A., Sheth, A.: “time for dabs”: analyzing twitter data on marijuana concentrates across the US. Drug Alcohol Depend. 155, 307–311 (2015)CrossRefGoogle Scholar
  8. 8.
    Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012)CrossRefGoogle Scholar
  9. 9.
    Ebrahimi, M., Yazdavar, A.H., Salim, N., Eltyeb, S.: Recognition of side effects as implicit-opinion words in drug reviews. Online Inf. Rev. 40(7), 1018–1032 (2016)CrossRefGoogle Scholar
  10. 10.
    Ebrahimi, M., Yazdavar, A.H., Sheth, A.: Challenges of sentiment analysis for dynamic events. IEEE Intell. Syst. 32(5), 70–75 (2017)CrossRefGoogle Scholar
  11. 11.
    Gruhl, D., Nagarajan, M., Pieper, J., Robson, C., Sheth, A.: Context and domain knowledge enhanced entity spotting in informal text. In: International Semantic Web Conference, pp. 260–276. Springer, Berlin (2009)Google Scholar
  12. 12.
    Haselton, M.G., Nettle, D., Murray, D.R.: The evolution of cognitive bias. In: The Handbook of Evolutionary Psychology. Wiley, New York (2005)Google Scholar
  13. 13.
    Hirschfeld, L.A., Gelman, S.A.: Mapping the Mind: Domain Specificity in Cognition and Culture. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  14. 14.
    House, W.: Epidemic: Responding to America’s Prescription Drug Abuse Crisis. White House, Washington (2011)Google Scholar
  15. 15.
    Kapanipathi, P., Jain, P., Venkataramani, C., Sheth, A.: User interests identification on twitter using a hierarchical knowledge base. In: European Semantic Web Conference, pp. 99–113. Springer, Berlin (2014)Google Scholar
  16. 16.
    Kroenke, K., Spitzer, R.L., Williams, J.B.: The phq-9. J. Gen. Intern. Med. 16(9), 606–613 (2001)CrossRefGoogle Scholar
  17. 17.
    Kušen, E., Cascavilla, G., Figl, K., Conti, M., Strembeck, M.: Identifying emotions in social media: comparison of word-emotion lexicons. In: 2017 5th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), pp. 132–137. IEEE, New York (2017)Google Scholar
  18. 18.
    Lalithsena, S.: Domain-specific knowledge extraction from the web of data. Department of Computer Science and Engineering, Wright State University (2018)Google Scholar
  19. 19.
    Lalithsena, S., Perera, S., Kapanipathi, P., Sheth, A.: Domain-specific hierarchical subgraph extraction: a recommendation use case. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 666–675. IEEE, New York (2017)Google Scholar
  20. 20.
    Liu, B.: Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human Language Technologies, vol. 5, no. 1, pp. 1–167. Morgan and Claypool , San Rafael (2012)CrossRefGoogle Scholar
  21. 21.
    Milette, K., Hudson, M., Baron, M., Thombs, B.D., Canadian Scleroderma Research Group: Comparison of the phq-9 and ces-d depression scales in systemic sclerosis: internal consistency reliability, convergent validity and clinical correlates. Rheumatology 49(4), 789–796 (2010)CrossRefGoogle Scholar
  22. 22.
    Miller, H., Thebault-Spieker, J., Chang, S., Johnson, I., Terveen, L., Hecht, B.: Blissfully happy” or “ready to fight”: varying interpretations of emoji. In: Proceedings of ICWSM, vol. 2016 (2016)Google Scholar
  23. 23.
    Miller, M., Banerjee, T., Muppalla, R., Romine, W., Sheth, A.: What are people tweeting about Zika? An exploratory study concerning its symptoms, treatment, transmission, and prevention. JMIR Public Health Surveill. 3(2), e38 (2017)CrossRefGoogle Scholar
  24. 24.
    Mukherjee, S., Malu, A., Balamurali, A.R., Bhattacharyya, P.: Twisent: a multistage system for analyzing sentiment in twitter. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 2531–2534. ACM, New York (2012)Google Scholar
  25. 25.
    Novak, P.K., Smailović, J., Sluban, B., Mozetič, I.: Sentiment of emojis. PLoS One 10(12), e0144296 (2015)CrossRefGoogle Scholar
  26. 26.
    Ostuni, V.C., Di Noia, T., Di Sciascio, E., Mirizzi, R.: Top-n recommendations from implicit feedback leveraging linked open data. In: Proceedings of the 7th ACM Conference on Recommender Systems, pp. 85–92. ACM, New York (2013)Google Scholar
  27. 27.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREc, vol. 10 (2010)Google Scholar
  28. 28.
    Pennacchiotti, M., Popescu, A.M.: Democrats, republicans and starbucks afficionados: user classification in twitter. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 430–438. ACM, New York (2011)Google Scholar
  29. 29.
    Perera, S., Mendes, P.N., Alex, A., Sheth, A.P., Thirunarayan, K.: Implicit entity linking in tweets. In: International Semantic Web Conference, pp. 118–132. Springer, Berlin (2016)CrossRefGoogle Scholar
  30. 30.
    Purohit, H., Castillo, C., Diaz, F., Sheth, A., Meier, P.: Emergency-relief coordination on social media: automatically matching resource requests and offers. First Monday 19(1) (2013).
  31. 31.
    Schuhmacher, M., Ponzetto, S.P.: Knowledge-based graph document modeling. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, pp. 543–552. ACM, New York (2014)Google Scholar
  32. 32.
    Sheth, A., Avant, D., Bertram, C.: System and method for creating a semantic web and its applications in browsing, searching, profiling, personalization and advertising (Oct 30, 2001). US Patent 6,311,194Google Scholar
  33. 33.
    Sheth, A., Bertram, C., Avant, D., Hammond, B., Kochut, K., Warke, Y.: Managing semantic content for the web. IEEE Internet Comput. 6(4), 80–87 (2002)CrossRefGoogle Scholar
  34. 34.
    Sheth, A., Perera, S., Wijeratne, S., Thirunarayan, K.: Knowledge will propel machine understanding of content: extrapolating from current examples. In: Proceedings of the International Conference on Web Intelligence. WI ’17, pp. 1–9. ACM, New York (2017).
  35. 35.
    Singhal, A.: Introducing the knowledge graph: things, not strings. Official google blog (2012)Google Scholar
  36. 36.
    Smith, A.N., Fischer, E., Yongjian, C.: How does brand-related user-generated content differ across YouTube, Facebook, and Twitter? J. Int. Mark. 26(2), 102–113 (2012)CrossRefGoogle Scholar
  37. 37.
    Usbeck, R., Ngomo, A.C.N., Röder, M., Gerber, D., Coelho, S.A., Auer, S., Both, A.: Agdistis-graph-based disambiguation of named entities using linked data. In: International Semantic Web Conference, pp. 457–471. Springer, Berlin, (2014)Google Scholar
  38. 38.
    Vowles, K.E., McEntee, M.L., Julnes, P.S., Frohe, T., Ney, J.P., van der Goes, D.N.: Rates of opioid misuse, abuse, and addiction in chronic pain: a systematic review and data synthesis. Pain 156(4), 569–576 (2015)CrossRefGoogle Scholar
  39. 39.
    Wang, W., Chen, L., Thirunarayan, K., Sheth, A.P.: Harnessing twitter “big data” for automatic emotion identification. In: Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference on and 2012 International Conference on Social Computing (SocialCom), pp. 587–592. IEEE, New York (2012)Google Scholar
  40. 40.
    Wijeratne, S., Balasuriya, L., Sheth, A., Doran, D.: Emojinet: building a machine readable sense inventory for emoji. In: International Conference on Social Informatics, pp. 527–541. Springer, Berlin (2016)Google Scholar
  41. 41.
    Yazdavar, A.H., Al-Olimat, H.S., Ebrahimi, M., Bajaj, G., Banerjee, T., Thirunarayan, K., Pathak, J., Sheth, A.: Semi-supervised approach to monitoring clinical depressive symptoms in social media. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, pp. 1191–1198. ACM, New York (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Soon Jye Kho
    • 1
    Email author
  • Swati Padhee
    • 1
  • Goonmeet Bajaj
    • 1
  • Krishnaprasad Thirunarayan
    • 1
  • Amit Sheth
    • 1
  1. 1.Kno.e.sis CenterWright State UniversityDaytonUSA

Personalised recommendations