Predictive Analysis on Twitter: Techniques and Applications

  • Ugur KursuncuEmail author
  • Manas Gaur
  • Usha Lokala
  • Krishnaprasad Thirunarayan
  • Amit Sheth
  • I. Budak Arpinar
Part of the Lecture Notes in Social Networks book series (LNSN)


Predictive analysis of social media data has attracted considerable attention from the research community as well as the business world because of the essential and actionable information it can provide. Over the years, extensive experimentation and analysis for insights have been carried out using Twitter data in various domains such as healthcare, public health, politics, social sciences, and demographics. In this chapter, we discuss techniques, approaches, and state-of-the-art applications of predictive analysis of Twitter data. Specifically, we present fine-grained analysis involving aspects such as sentiment, emotion, and the use of domain knowledge in the coarse-grained analysis of Twitter data for making decisions and taking actions, and relate a few success stories.



We are grateful to Amelie Gyrard, Mustafa Nural, Sanjaya Wijeratne, Shreyansh Bhatt, and Ankita Saxena for their assistance with their reviews and comments that greatly improved this book chapter.

We acknowledge partial support from the National Science Foundation (NSF) award CNS-1513721: “Context-Aware Harassment Detection on Social Media,” National Institutes of Health (NIH) award: MH105384-01A1: “Modeling Social Behavior for Healthcare Utilization in Depression,” NSF award EAR- 1520870 ‘Hazards SEES: Social and Physical Sensing Enabled Decision Support for Disaster Management and Response’, Community in Social Media: This work was supported by Army Research Office Grant No. W911NF-16-1-0300, National Institute on Drug Abuse (NIDA) Grant No. 5R01DA039454-02 Trending: Social media analysis to monitor cannabis and synthetic cannabinoid use. Any opinions, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF, NIH, NIDA, or Army Research Office.


  1. 1.
    Purohit, H., Sheth, A.: Twitris v3: from citizen sensing to analysis, coordination and action. In: ICWSM (2013)Google Scholar
  2. 2.
    Davis, C.A., Ciampaglia, G.L., Aiello, L.M., Chung, K., Conover, M.D., Ferrara, E., Flammini, A., Fox, G.C., Gao, X., Gonçalves, B., Grabowicz, P.A., Hong, K., Hui, P.-M., Mccaulay, S., Mckelvey, K., Meiss, M.R., Patil, S., Kankanamalage, C.P., Pentchev, V., Qiu, J., Ratkiewicz, J., Rudnick, A., Serrette, B., Shiralkar, P., Varol, O., Weng, L., Wu, T.-L., Younge, A.J., Menczer F.: OSoMe: the IUNI observatory on social media. PeerJ Comput. Sci. (2016)Google Scholar
  3. 3.
    Sheth, A., Purohit, H., Smith, G.A., Brunn, J., Jadhav, A., Kapanipathi, P., Lu, C., Wang, W.: Twitris: a system for collective social intelligence. In: Encyclopedia of Social Network Analysis and Mining (2018)Google Scholar
  4. 4.
    Penuel, K.B., Statler, M.: Encyclopedia of Disaster Relief. Sage Publications, Thousand Oaks (2011)CrossRefGoogle Scholar
  5. 5.
    Malilay, J., Heumann, M., Perrotta, D., Wolkin, A.F., Schnall, A.H., Podgornik, M.N., Cruz, M.A., Horney, J.A., Zane, D., Roisman, R., Greenspan, J.R., Thoroughman, D., Anderson, H.A., Wells, E.V., Simms E.F.: The role of applied epidemiology methods in the disaster management cycle. Am. J. Public Health 104(10), 2092–2102 (2014)CrossRefGoogle Scholar
  6. 6.
    Wang, W., Chen, L., Thirunarayan, K., Sheth, A.P.: Harnessing twitter ‘Big Data’ for automatic emotion identification. In: IEEE International Conference on Social Computing (SocialCom) (2012)Google Scholar
  7. 7.
    Lamy, F.R., Daniulaityte, R., Nahhas, R.W., Barratt, M.J., Smith, A.G., Sheth, A., Martins, S.S., Boyer, E.W., Carlson, R.G.: Increases in synthetic cannabinoids-related harms: results from a longitudinal web-based content analysis. Int. J. Drug Policy (2017)Google Scholar
  8. 8.
    Sheth, A., Kapanipathi, P.: Semantic filtering for social data. IEEE Internet Comput. (2016)Google Scholar
  9. 9.
    Kapanipathi, P., Orlandi, F., Sheth, A., Passant A.: Personalized filtering of the twitter stream. In: SPIM Workshop at ISWC 2011 (2011)Google Scholar
  10. 10.
    Kapanipathi, P., Jain, P., Venkataramani, C., Sheth, A.: User interests identification on twitter using a hierarchical knowledge base. In: European Semantic Web Conference (2014)Google Scholar
  11. 11.
    Cameron, D., Smith, G.A., Daniulaityte, R., Sheth, A.P., Dave, D., Chen, L., Anand, G., Carlson, R., Watkins, K.Z., Falck, R.: PREDOSE: a semantic web platform for drug abuse epidemiology using social media. J. Biomed. Inform. 46, 985–997 (2013)CrossRefGoogle Scholar
  12. 12.
    Saif, H.: Semantic Sentiment Analysis in Social Streams. IOS Press, Amsterdam (2017)Google Scholar
  13. 13.
    Wijeratne, S., Sheth, A., Bhatt, S., Balasuriya, L., Al-Olimat, H.S., Gaur, M., Yazdavar, A.H., Thirunarayan, K.: Feature engineering for twitter-based applications. In: Feature Engineering for Machine Learning and Data Analytics, p. 35 (2017)Google Scholar
  14. 14.
    Gimpel, K., Schneider, N., O ’connor, B., Das, D., Mills, D., Eisenstein, J., Heilman, M., Yogatama, D., Flanigan, J., Smith, N.A.: Part-of-speech tagging for twitter: annotation, features, and experiments. In: Proceedings of ACL (2011)Google Scholar
  15. 15.
    Wagner, C., Asur, S., Hailpern, J.: Religious politicians and creative photographers: automatic user categorization in twitter. In: SocialCom (2013)Google Scholar
  16. 16.
    Wang, X., Wei, F., Liu, X., Zhou, M., Zhang, M.: Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. ACM, New York (2011)Google Scholar
  17. 17.
    Davidov, D., Tsur, O., Rappoport, A.: Enhanced sentiment learning using twitter hashtags and smileys. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 241–249. ACM, New York (2010)Google Scholar
  18. 18.
    Kouloumpis, E., Wilson, T., Moore, J.: Twitter sentiment analysis: the good the bad and the omg! In: Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (ICWSM 11), pp. 538–541 (2011)Google Scholar
  19. 19.
    Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the 20th International Conference on World Wide Web. (2011)Google Scholar
  20. 20.
    Morstatter, F., Pfeffer, J., Liu, H., Carley, K.M.: Is the sample good enough? Comparing data from twitter’s streaming API with twitter’s firehose. In: ICWSM, pp. 400–408 (2013)Google Scholar
  21. 21.
    Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. Technical Report (2009)Google Scholar
  22. 22.
    Agarwal, A., Xie, B., Vovsha, I.: Sentiment analysis of twitter data. In: Proceedings of the Workshop on Language in Social Media (LSM 2011), pp. 30–38 (2011)Google Scholar
  23. 23.
    Suh, B., Hong, L., Pirolli, P., Chi, E.H.: Want to be retweeted? Large scale analytics on factors impacting retweet in twitter network. In: IEEE International Conference on Social Computing Social Computing (SocialCom) (2010)Google Scholar
  24. 24.
    Naveed, N., Gottron, T., Kunegis, J., Alhadi, A.C.: Bad news travel fast : a content-based analysis of interestingness on twitter. In: Proceedings of the 3rd International Web Science Conference. ACM, New York (2011)Google Scholar
  25. 25.
    Thomas, K., Grier, C., Paxson, V.: Suspended accounts in retrospect: an analysis of twitter spam. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement (2011)Google Scholar
  26. 26.
    Liu, K.-L., Li, W.-J., Guo, M.: Emoticon smoothed language models for twitter sentiment analysis. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)Google Scholar
  27. 27.
    Zhai, C., Lafferty, J., Lafferty, J., Zhai, C.: A study of smoothing methods for language models applied to information retrieval. ACM Trans. Inform. Syst. 22(2), 179–214 (2004)CrossRefGoogle Scholar
  28. 28.
    Boia, M., Faltings, B.: A :) is worth a thousand words: how people attach sentiment to emoticons and words in tweets. In: SocialCom (2013)Google Scholar
  29. 29.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREc, vol. 10 (2010)Google Scholar
  30. 30.
    Kelly, R., Watts, L.: Characterising the inventive appropriation of emoji as relationally meaningful in mediated close personal relationships. In: Experiences of Technology Appropriation: Unanticipated Users, Usage, Circumstances, and Design (2015)Google Scholar
  31. 31.
    Novak, P.K., Smailović, J., Sluban, B., Mozetič, I.: Sentiment of emojis. PLOS One (2015)Google Scholar
  32. 32.
    Miller, H., Thebault-Spieker, J., Chang, S., Johnson, I., Terveen, L., Hecht, B.: ‘Blissfully happy’ or ‘ready to fight’: varying interpretations of emoji. In: International AAAI Conference on Web and Social Media, ICWSM, pp. 259–268 (2016)Google Scholar
  33. 33.
    Wijeratne, S., Balasuriya, L., Sheth, A., Doran, D.: EmojiNet: an open service and API for emoji sense discovery. In: ICWSM (2017)Google Scholar
  34. 34.
    Varol, O., Ferrara, E., Menczer, F., Flammini, A.: Early detection of promoted campaigns on social media. EPJ Data Sci. 6(1), 13 (2017)CrossRefGoogle Scholar
  35. 35.
    Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Networks 179, 215–239 (1978)CrossRefGoogle Scholar
  36. 36.
    Freeman, L.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)CrossRefGoogle Scholar
  37. 37.
    Bonacich, P.: Power and centrality : a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987)CrossRefGoogle Scholar
  38. 38.
    Lawyer, G.: Understanding the influence of all nodes in a network. Nat. Sci. Rep. (2015)Google Scholar
  39. 39.
    Pennacchiotti, M., Popescu, A.-M.: Democrats, republicans and starbucks afficionados: user classification in twitter. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2011)Google Scholar
  40. 40.
    Irfan, R., King, C.K., Grages, D., Ewen, S., Khan, S.U., Madani, S.A., Kolodziej, J., Wang, L., Chen, D., Rayes, A., Tziritas, N., Xu, C.-Z., Zomaya, A.Y., Alzahrani, A.S., Li, H.X.: A survey on text mining in social networks. Knowl. Eng. Rev. 000, 1–24 (2004)Google Scholar
  41. 41.
    Nassirtoussi, A.K., Aghabozorgi, S., Wah, T.Y., Chek, D., Ngo, L.: Text mining for market prediction: a systematic review. Expert Syst. Appl. 41, 7653–7670 (2014)CrossRefGoogle Scholar
  42. 42.
    Franch, F.: (Wisdom of the crowds) : 2010 UK election prediction with social media. J. Inform. Technol. Polit. 10(1), 57–71 (2013)CrossRefGoogle Scholar
  43. 43.
    Bravo-Marquez, F., Gayo-Avello, D., Mendoza, M., Poblete, B.: Opinion dynamics of elections in twitter. In: Eighth Latin American Web Congress (2012)Google Scholar
  44. 44.
    Hong, L., Dan, O., Davison, B.: Predicting popular messages in twitter. In: WWW (2011)Google Scholar
  45. 45.
    Sokolova, M., Huang, K., Matwin, S., Ramisch, J., Sazonova, V., Black, R., Orwa, C., Ochieng, S., Sambuli, N.: Topic modelling and event identification from twitter textual data (2016). ArXiv preprintGoogle Scholar
  46. 46.
    Dumais, S.T.: Latent semantic analysis. Annu. Rev. Inform. Sci. Technol. 3(11), 4356 (2008)Google Scholar
  47. 47.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. Adv. Neural Inf. Proces. Syst. (2013)Google Scholar
  48. 48.
    Wijeratne, S., Balasuriya, L., Doran, D., Sheth, A., Org, A.: Word embeddings to enhance twitter gang member profile identification. In: IJCAI Workshop on Semantic Machine Learning (2016)Google Scholar
  49. 49.
    Balasuriya, L., Wijeratne, S., Doran, D., Sheth, A.: Finding street gang members on twitter. In: ASONAM (2016)Google Scholar
  50. 50.
    Sakaki, S., Miura, Y., Ma, X., Hattori, K., Ohkuma, T.: Twitter user gender inference using combined analysis of text and image processing. In: Proceedings of the 25th International Conference on Computational Linguistics, pp. 54–61 (2014)Google Scholar
  51. 51.
    Bontcheva, K., Derczynski, L., Funk, A., Greenwood, M.A., Maynard, D., Aswani, N.: TwitIE : an open-source information extraction pipeline for microblog text. In: Proceedings of Recent Advances in Natural Language Processing, pp. 83–90 (2013)Google Scholar
  52. 52.
    Mitra, T., Gilbert, E.: CREDBANK: a large-scale social media corpus with associated credibility annotations. In: ICWSM (2016)Google Scholar
  53. 53.
    De Choudhury, M., Gamon, M., Counts, S., Horvitz, E.: Predicting depression via social media. In: ICWSM (2013)Google Scholar
  54. 54.
    Lewenberg, Y., Bachrach, Y., Volkova, S.: Using emotions to predict user interest areas in online social networks. In: Data Science and Advanced Analytics (DSAA) (2015)Google Scholar
  55. 55.
    Wang, H., Can, D., Kazemzadeh, A., Bar, F., Narayanan, S.: A system for real-time twitter sentiment analysis of 2012 U.S. Presidential election cycle. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pp. 115–120 (2012)Google Scholar
  56. 56.
    Ebrahimi, M., Yazdavar, A.H., Sheth, A.: On the challenges of sentiment analysis for dynamic events. IEEE Intell. Syst. (2017)Google Scholar
  57. 57.
    Vieweg, S., Hughes, A.L., Starbird, K., Palen, L.: Microblogging during two natural hazards events: what twitter may contribute to situational awareness. In: CHI - Crisis Informatics (2010)Google Scholar
  58. 58.
    Chen, L., Wang, W., Sheth, A.P.: Are twitter users equal in predicting elections? A study of user groups in predicting 2012 U.S. Republican Presidential primaries. In: Social Informatics (2012)Google Scholar
  59. 59.
    De Choudhury, M., Jhaver, S., Sugar, B., Weber, I.: Social media participation in an activist movement for racial equality. In: ICSWM, pp. 92–101 (2016)Google Scholar
  60. 60.
    Purohit, H., Hampton, A., Shalin, V.L., Sheth, A.P., Flach, J., Bhatt, S.: What kind of #conversation is twitter? Mining #psycholinguistic cues for emergency coordination. Comput. Hum. Behav. 29, 2438–2447 (2013)CrossRefGoogle Scholar
  61. 61.
    Purohit, H., Hampton, A., Bhatt, S., Shalin, V.L., Sheth, A.P., Flach, J.M.: Identifying seekers and suppliers in social media communities to support crisis coordination. In: Computer Supported Cooperative Work (CSCW) (2014)Google Scholar
  62. 62.
    Purohit, H., Bhatt, S., Hampton, A., Shalin, V.L., Sheth, A.P.: With whom to coordinate, why and how in ad- hoc social media communications during crisis response. In: Proceedings of the 11th International ISCRAM Conference, pp. 787–791 (2014)Google Scholar
  63. 63.
    Bhatt, S., Purohit, H., Hampton, A.: Assisting coordination during crisis: a domain ontology based approach to infer resource needs from tweets. In: Web Science (2014)Google Scholar
  64. 64.
    Nguyen, L.T., Wu, P., Chan, W., Peng, W., Zhang, Y.: Predicting collective sentiment dynamics from time-series social media. In: Proceedings of the First International Workshop on Issues of Sentiment Discovery and Opinion Mining (WISDOM), pp. 6:1–6:8 (2012)Google Scholar
  65. 65.
    Stojanovski, D., Strezoski, G., Madjarov, G., Dimitrovski, I.: Finki at SemEval-2016 task 4: deep learning architecture for twitter sentiment analysis. In: Proceedings of SemEval, pp. 149–154 (2016)Google Scholar
  66. 66.
    Esuli, A., Sebastiani, F., Nazionale, C., Ricerche, D.: Optimizing text quantifiers for multivariate loss functions. ACM Trans. Knowl. Discov. Data. VV 26 (2015)Google Scholar
  67. 67.
    Griffiths, T.L., Steyvers, M., Tenenbaum, J.B.: Topics in semantic representation. Psychol. Rev. (2007)Google Scholar
  68. 68.
    Chen, L., Org, C., Wang, W., Org, W., Nagarajan, M., Wang, S., Sheth, A.P., Org, A.: Extracting diverse sentiment expressions with target-dependent polarity from twitter. In: Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media (2012)Google Scholar
  69. 69.
    Hong, L., Davison, B.D.: Empirical study of topic modeling in twitter. In: 1st Workshop on Social Media Analytics (SOMA’10) (2010)Google Scholar
  70. 70.
    Zhao, W.X., Jiang, J., He, J., Song, Y., Achananuparp, P., Lim, E.-P., Li, X.: Topical keyphrase extraction from twitter. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pp. 379–388 (2011)Google Scholar
  71. 71.
    Wang, X., Gerber, M.S., Brown, D.E.: Automatic crime prediction using events extracted from twitter posts. In: International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction. Springer, Berlin (2012)CrossRefGoogle Scholar
  72. 72.
    Bhattacharya, N., Arpinar, I., Kursuncu, U.: Real time evaluation of quality of search terms during query expansion for streaming text data using velocity and relevance. In: Proceedings - IEEE 11th International Conference on Semantic Computing, ICSC 2017 (2017)Google Scholar
  73. 73.
    Phillips, L., Dowling, C., Shaffer, K., Hodas, N., Volkova, S.: Using social media to predict the future: a systematic literature review (2017). Arxiv preprintGoogle Scholar
  74. 74.
    Robillard, J.M., Johnson, T.W., Hennessey, C., Beattie, B.L., Illes, J.: Aging 2.0: health information about dementia on twitter. Plos One 20(87) (2013)Google Scholar
  75. 75.
    Prieto, V.M., Rgio Matos, S., Lvarez, M., Cacheda, F., Oliveira, J.L., Añ, J.A.: Twitter: a good place to detect health conditions. PLoS ONE 9(1) (2014)CrossRefGoogle Scholar
  76. 76.
    Yazdavar, A.H., Al-Olimat, H.S., Ebrahimi, M., Bajaj, G., Banerjee, T., Thirunarayan, K., Pathak, J., Sheth, A.: Semi-supervised approach to monitoring clinical depressive symptoms in social media. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (2017)Google Scholar
  77. 77.
    Coppersmith, G., Dredze, M., Harman, C., Hollingshead Ihmc, K.: From ADHD to SAD: analyzing the language of mental health on twitter through self-reported diagnoses. In: Proceedings of the 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, pp. 1–10 (2015)Google Scholar
  78. 78.
    Do, T.H., Nguyen, D.M., Tsiligianni, E., Cornelis, B., Deligiannis, N.: Multiview deep learning for predicting twitter users’ location (2017). Arxiv preprintGoogle Scholar
  79. 79.
    Lau, J.H., Baldwin, T.: An empirical evaluation of doc2vec with practical insights into document embedding generation (2016). Arxiv preprintGoogle Scholar
  80. 80.
    Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)Google Scholar
  81. 81.
    Bo, H., Cook, P., Imoth, T., Dw, B.: Geolocation prediction in social media data by finding location indicative words. In: Proceedings of COLING 2012, pp. 1045–1062 (2012)Google Scholar
  82. 82.
    Daniulaityte, R., Nahhas, R.W., Wijeratne, S., Carlson, R.G., Lamy, F.R., Martins, S.S., Boyer, E.W., Smith, G.A., Sheth, A.: Time for dabs: analyzing twitter data on marijuana concentrates across the U.S. HHS public access. Drug Alcohol Depend. 155, 307–311 (2015)Google Scholar
  83. 83.
    Lamy, F.R., Daniulaityte, R., Sheth, A., Nahhas, R.W., Martins, S.S., Boyer, E.W., Carlson Francois R Lamy, R.G.: Those edibles hit hard: exploration of twitter data on cannabis edibles in the U.S HHS public access. Drug Alcohol Depend. 1(164), 64–70 (2016)Google Scholar
  84. 84.
    Howard, P.N., Hussain, M., Mari, W.: Opening closed regimes what was the role of social media during the Arab Spring? In: Project on Information Technology & Political Islam (2011)Google Scholar
  85. 85.
    Tufekci, Z.: Big questions for social media big data: representativeness, validity and other methodological pitfalls. In: ICWSM (2014)Google Scholar
  86. 86.
    Arpinar, I., Kursuncu, U., Achilov, D.: Social media analytics to identify and counter Islamist extremism: systematic detection, evaluation, and challenging of extremist narratives online. In: Proceedings - 2016 International Conference on Collaboration Technologies and Systems, CTS 2016 (2016)Google Scholar
  87. 87.
    Haciyakupoglu, G., Zhang, W.: Social media and trust during the Gezi protests in turkey. J. Comput. Mediat. Commun. 20(4), 450–466 (2015)CrossRefGoogle Scholar
  88. 88.
    Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ. Perspect. 31(2, Spring), 211–236 (2017)Google Scholar
  89. 89.
    Hoang, T.-A., Cohen, W.W., Lim, E.-P., Pierce, D., Redlawsk, D.P.: Politics, sharing and emotion in microblogs. In: ASONAM (2013)Google Scholar
  90. 90.
    Makazhanov, A., Rafiei, D.: Predicting political preference of twitter users. Soc. Netw. Anal. Min. (2014)Google Scholar
  91. 91.
    Cohen, R., Ruths, D.: Classifying political orientation on twitter: it’s not easy! In: ICWSM (2013)Google Scholar
  92. 92.
    Xu, J.-M., Jun, K.-S., Zhu, X., Bellmore, A.: Learning from bullying traces in social media. In: 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 656–666 (2012)Google Scholar
  93. 93.
    Chen, Y., Zhu, S., Zhou, Y., Xu, H.: Detecting offensive language in social media to protect adolescent online safety. In: Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference on and 2012 International Conference on Social Computing (SocialCom) (2012)Google Scholar
  94. 94.
    Edupuganti, V.: Harassment detection on twitter using conversations. Ph.D. dissertation (2017)Google Scholar
  95. 95.
    Kandakatla, R.: Identifying offensive videos on YouTube. Ph.D. dissertation (2016)Google Scholar
  96. 96.
    Wijeratne, S., Doran, D., Sheth, A., Dustin, J.L.: Analyzing the social media footprint of street gangs. In: Intelligence and Security Informatics (ISI) (2015)Google Scholar
  97. 97.
    Blevins, T., Kwiatkowski, R., Macbeth, J., Mckeown, K., Patton, D., Rambow, O.: Automatically processing tweets from gang-involved youth: towards detecting loss and aggression. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 2196–2206 (2016)Google Scholar
  98. 98.
    Bushman B., Huesmann, L.: Short-term and long-term effects of violent media on aggression in children and adults. Arch. Pediatr. Adolesc. Med. 160, 348–352 (2006)CrossRefGoogle Scholar
  99. 99.
    Ni, M., He, Q., Gao, J.: Using social media to predict traffic flow under special event conditions. In: The 93rd Annual Meeting of Transportation Research Board (2014)Google Scholar
  100. 100.
    Krishnamurthy, R., Kapanipathi, P., Sheth, A.P., Thirunarayan, K., Sheth, A.: Location prediction of twitter users using wikipedia (2014)Google Scholar
  101. 101.
    Mahmud, J., Nichols, J., Drews, C.: Where is this tweet from? Inferring home locations of twitter users. In: ICWSM (2012)Google Scholar
  102. 102.
    Al-Olimat, H.S., Thirunarayan, K., Shalin, V., Sheth, A.: Location name extraction from targeted text streams using Gazeeer-based statistical language models, vol. 11, no. 17 (2017). Arxiv preprintGoogle Scholar
  103. 103.
    Haklay, M., Weber, P.: OpenStreetMap: user-generated street maps. IEEE Pers. Commun. 7, 12–18 (2008)Google Scholar
  104. 104.
    Ahlers, D.: Assessment of the accuracy of GeoNames gazetteer data. In: GIR (2013)Google Scholar
  105. 105.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia ’ a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web, vol. 1, pp. 1–5 (2012)Google Scholar
  106. 106.
    Lee, M.D., Lee, M.N.: The relationship between crowd majority and accuracy for binary decisions. Judgm. Decis. Mak. 12(4), 328–343 (2017)Google Scholar
  107. 107.
    Bhatt, S., Minnery, B., Nadella, S., Bullemer, B., Shalin, V., Sheth, A.: Enhancing crowd wisdom using measures of diversity computed from social media data. In: Proceedings of the International Conference on Web Intelligence (2017)Google Scholar
  108. 108.
    Smith, A., Gaur, M.: What’s my age?: Predicting twitter user’s age using influential friend network and DBpedia (2018). Arxiv preprintGoogle Scholar
  109. 109.
    Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: Encyclopedia of Database Systems. Springer, Berlin (2009)Google Scholar
  110. 110.
    Nguyen, D., Smith, N.A., Rosé, C.P.: Author age prediction from text using linear regression. In: Proceedings of the 5th ACL-HLT Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities. Association for Computational Linguistics (2011)Google Scholar
  111. 111.
    Chen, C., Chang, Y., Ricanek, K., Wang, Y.: Face age estimation using model selection. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, pp. 93–99 (2010)Google Scholar
  112. 112.
    Culotta, A., Kumar Ravi, N., Cutler, J.: Predicting twitter user demographics using distant supervision from website traffic data. J. Artif. Intell. Res. 55, 389–408 (2016)CrossRefGoogle Scholar
  113. 113.
    Zhang, J., Hu, X., Zhang, Y., Liu, H.: Your age is no secret: Inferring microbloggers’ ages via content and interaction analysis. In: Proceedings of the 10th International Conference on Web and Social Media, ICWSM 2016, pp. 476–485 (2016)Google Scholar
  114. 114.
    Nguyen, D., Gravel, R., Trieschnigg, D., Meder, T.: How old do you think i am?”: a study of language and age in twitter. In: ICWSM (2013)Google Scholar
  115. 115.
    Bamman, D., Eisenstein, J., Schnoebelen, T.: Gender in twitter: styles, stances, and social networks. In: CoRR (2012)Google Scholar
  116. 116.
    Li, W., Dickinson, M.: Gender prediction for Chinese social media data. In: Proceedings of Recent Advances in Natural Language Processing (2017), pp. 438–445Google Scholar
  117. 117.
    Li, L., Sun, M., Liu, Z.: Discriminating gender on Chinese microblog: a study of online behaviour, writing style and preferred vocabulary. In: 10th International Conference on Natural Computation (ICNC) (2014)Google Scholar
  118. 118.
    Volkova, S., Bell, E.: Identifying effective signals to predict deleted and suspended accounts on twitter across languages. In: ICWSM, Association for the Advancement of Artificial Intelligence, pp. 290–298 (2017)Google Scholar
  119. 119.
    Dickerson, J.P., Kagan, V., Subrahmanian, V.S.: Using sentiment to detect bots on twitter: are humans more opinionated than bots? In: ASONAM (2014)Google Scholar
  120. 120.
    Varol, O., Ferrara, E., Davis, C.A., Menczer, F., Flammini, A.: Online human-bot interactions: detection, estimation, and characterization. In: ICWSM (2017)Google Scholar
  121. 121.
    Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 675–684. ACM, New York (2011)Google Scholar
  122. 122.
    Ross, J., Thirunarayan, K.: Features for ranking tweets based on credibility and newsworthiness. In: International Conference on Collaboration Technologies and Systems (2016)Google Scholar
  123. 123.
    Gupta, A., Kumaraguru, P., Castillo, C., Meier, P.: TweetCred: a real-time web-based system for assessing credibility of content on twitter. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8851, November 2014Google Scholar
  124. 124.
    Gupta, A., Kumaraguru, P.: Credibility ranking of tweets during high impact events. In: PSOSM (2012)Google Scholar
  125. 125.
    Gupta, A., Lamba, H., Kumaraguru, P., Joshi, A.: Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In: WWW (2013)Google Scholar
  126. 126.
    Weng, L., Menczer, F., Ahn, Y.-Y.: Predicting successful memes using network and community structure. In: IC, pp. 535–544 (2014)Google Scholar
  127. 127.
    Kobayashi, R., Lambiotte, R.: TiDeH: time-dependent Hawkes process for predicting retweet dynamics. In: ICWSM, pp. 191–200 (2016)Google Scholar
  128. 128.
    Tsur, O., Rappoport, A.: Don’t let me be #misunderstood: linguistically motivated algorithm for predicting the popularity of textual memes. In: ICWSM, Ninth International AAAI Conference on Web and Social Media, pp. 426–435 (2015)Google Scholar
  129. 129.
    Ruan, Y., Purohit, H., Fuhry, D., Parthasarathy, S., Sheth, A.P., Sheth, A.: Prediction of topic volume on twitter. In: 4th International ACM Conference on Web Science, pp. 397–402 (2012)Google Scholar
  130. 130.
    Pattisapu, N., Gupta, M., Kumaraguru, P., Varma, V.: Medical persona classification in social media. In: ASONAM (2017)Google Scholar
  131. 131.
    Gilani, Z., Kochmar, E., Crowcroft, J.: Classification of twitter accounts into automated agents and human users. In: ASONAM (2017)Google Scholar
  132. 132.
    Alowibdi, J.S., Buy, U.A., Yu, P.S., Stenneth, L.: Detecting deception in online social networks. In: ASONAM (2014)Google Scholar
  133. 133.
    Mahmud, J., Fei, G., Xu, A., Pal, A., Zhou, M.: Predicting attitude and actions of twitter users. In: Proceedings of the 21st International Conference on Intelligent User Interfaces - IUI’16, pp. 1–6. ACM, New York (2016)Google Scholar
  134. 134.
    Georgiev, P., Noulas, A., Mascolo, C.: Where businesses thrive: predicting the impact of the olympic games on local retailers through location-based services data, pp. 151–160. In: ICWSM (2014)Google Scholar
  135. 135.
    Yang, X., Mccreadie, R., Macdonald, C., Ounis, I.: Transfer learning for multi-language twitter election classification. In: ASONAM (2017)Google Scholar
  136. 136.
    Korolov, R., Lu, D., Wang, J., Zhou, G., Bonial, C., Voss, C., Kaplan, L., Wallace, W., Han, J., Ji, H.: On predicting social unrest using social media. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (2016)Google Scholar
  137. 137.
    Kallus, N.: Predicting crowd behavior with big public data. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 625–630. ACM, New York (2014)Google Scholar
  138. 138.
    Echeverria, J., Zhou, S.: Discovery, retrieval, and analysis of the ‘star wars’ botnet in twitter. In: ASONAM (2017)Google Scholar
  139. 139.
    Gao, W., Sebastiani, F.: Tweet sentiment: from classification to quantification. In: ASONAM (2015)Google Scholar
  140. 140.
    Hassan, A., Abbasi, A., Zeng, D.: Twitter sentiment analysis: a bootstrap ensemble framework. In: SocialCom (2013)Google Scholar
  141. 141.
    Kothari, A., Magdy, W., Darwish, K., Mourad, A., Taei, A.: Detecting comments on news articles in microblogs. In: ICWSM (2013)Google Scholar
  142. 142.
    Georgiou, T., Abbadi, A.E., Yan, X., George, J.: Mining complaints for traffic-jam estimation: a social sensor application. In: ASONAM (2015)Google Scholar
  143. 143.
    Aiswal, A.J., Peng, W., Sun, T.: Predicting time-sensitive user locations from social media. In: ASONAM (2013)Google Scholar
  144. 144.
    Rout, D., Preoiuc-Pietro, D., Bontcheva, K., Cohn, T.: Where’s @wally? A classification approach to geolocating users based on their social ties. In: 24th ACM Conference on Hypertext and Social Media, Paris (2013)Google Scholar
  145. 145.
    Rath, B., Gao, W., Ma, J., Srivastava, J.: From retweet to believability: utilizing trust to identify rumor spreaders on twitter. In: ASONAM (2017)Google Scholar
  146. 146.
    Bizid, I., Nayef, N., Boursier, P., Faiz, S., Morcos, J.: Prominent users detection during specific events by learning on-and off-topic features of user activities. In: ASONAM (2015)Google Scholar
  147. 147.
    Ferrara, E., Jafariasbagh, M., Varol, O., Qazvinian, V., Menczer, F., Flammini, A.: Clustering memes in social media. In: ASONAM (2013)Google Scholar
  148. 148.
    Yamamoto, S., Satoh, T.: Hierarchical estimation framework of multi-label classifying: a case of tweets classifying into real life aspects. In: ICWSM (2015)Google Scholar
  149. 149.
    Beykikhoshk, A., Arandjelovi, O., Phung, D., Venkatesh, S.: Data-mining twitter and the autism spectrum disorder: a pilot study. In: ASONAM (2014)Google Scholar
  150. 150.
    Yin, Z., Chen, Y., Fabbri, D., Sun, J., Malin, B.: #PrayForDad: learning the semantics behind why social media users disclose health information. In: ICWSM (2016)Google Scholar
  151. 151.
    Daniulaityte, R., Chen, L., Lamy, F.R., Carlson, R.G., Thirunarayan, K., Sheth, A.: ‘When ‘bad’ is ‘good’: identifying personal communication and sentiment in drug-related tweets. JMIR Public Health Surveill. (2016)Google Scholar
  152. 152.
    Hu, Y., Farnham, S., Talamadupula, K.: Predicting user engagement on twitter with real-world events. In: ICWSM (2015)Google Scholar
  153. 153.
    Kessler, J.S., Eckert, M., Clark, L., Nicolov Power, N.J.: The ICWSM 2010 JDPA sentiment corpus for the automotive domain. In: 4th International AAAI Conference on Weblogs and Social Media Data Workshop Challenge (ICWSM-DWC) (2010)Google Scholar
  154. 154.
    Covington, P., Adams, J., Sargin, E.: Deep neural networks for youtube recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems (2016)Google Scholar
  155. 155.
    Korpusik, M., Sakaki, S., Chen, F., Chen, Y.-Y.: Recurrent neural networks for customer purchase prediction on twitter. In: CBRecSys@ RecSys, pp. 47–50 (2016)Google Scholar
  156. 156.
    Tieleman, T., Hinton, G.: Divide the gradient by a running average of its recent magnitude. In: COURSERA: Neural Networks for Machine Learning (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Ugur Kursuncu
    • 1
    • 2
    Email author
  • Manas Gaur
    • 1
  • Usha Lokala
    • 1
  • Krishnaprasad Thirunarayan
    • 1
  • Amit Sheth
    • 1
  • I. Budak Arpinar
    • 2
  1. 1.Kno.e.sis CenterWright State UniversityDaytonUSA
  2. 2.Department of Computer ScienceThe University of GeorgiaAthensUSA

Personalised recommendations