Emerging Research Challenges and Opportunities in Computational Social Network Analysis and Mining pp 67-104 | Cite as
Predictive Analysis on Twitter: Techniques and Applications
Abstract
Predictive analysis of social media data has attracted considerable attention from the research community as well as the business world because of the essential and actionable information it can provide. Over the years, extensive experimentation and analysis for insights have been carried out using Twitter data in various domains such as healthcare, public health, politics, social sciences, and demographics. In this chapter, we discuss techniques, approaches, and state-of-the-art applications of predictive analysis of Twitter data. Specifically, we present fine-grained analysis involving aspects such as sentiment, emotion, and the use of domain knowledge in the coarse-grained analysis of Twitter data for making decisions and taking actions, and relate a few success stories.
Notes
Acknowledgements
We are grateful to Amelie Gyrard, Mustafa Nural, Sanjaya Wijeratne, Shreyansh Bhatt, and Ankita Saxena for their assistance with their reviews and comments that greatly improved this book chapter.
We acknowledge partial support from the National Science Foundation (NSF) award CNS-1513721: “Context-Aware Harassment Detection on Social Media,” National Institutes of Health (NIH) award: MH105384-01A1: “Modeling Social Behavior for Healthcare Utilization in Depression,” NSF award EAR- 1520870 ‘Hazards SEES: Social and Physical Sensing Enabled Decision Support for Disaster Management and Response’, Community in Social Media: This work was supported by Army Research Office Grant No. W911NF-16-1-0300, National Institute on Drug Abuse (NIDA) Grant No. 5R01DA039454-02 Trending: Social media analysis to monitor cannabis and synthetic cannabinoid use. Any opinions, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF, NIH, NIDA, or Army Research Office.
References
- 1.Purohit, H., Sheth, A.: Twitris v3: from citizen sensing to analysis, coordination and action. In: ICWSM (2013)Google Scholar
- 2.Davis, C.A., Ciampaglia, G.L., Aiello, L.M., Chung, K., Conover, M.D., Ferrara, E., Flammini, A., Fox, G.C., Gao, X., Gonçalves, B., Grabowicz, P.A., Hong, K., Hui, P.-M., Mccaulay, S., Mckelvey, K., Meiss, M.R., Patil, S., Kankanamalage, C.P., Pentchev, V., Qiu, J., Ratkiewicz, J., Rudnick, A., Serrette, B., Shiralkar, P., Varol, O., Weng, L., Wu, T.-L., Younge, A.J., Menczer F.: OSoMe: the IUNI observatory on social media. PeerJ Comput. Sci. (2016)Google Scholar
- 3.Sheth, A., Purohit, H., Smith, G.A., Brunn, J., Jadhav, A., Kapanipathi, P., Lu, C., Wang, W.: Twitris: a system for collective social intelligence. In: Encyclopedia of Social Network Analysis and Mining (2018)Google Scholar
- 4.Penuel, K.B., Statler, M.: Encyclopedia of Disaster Relief. Sage Publications, Thousand Oaks (2011)CrossRefGoogle Scholar
- 5.Malilay, J., Heumann, M., Perrotta, D., Wolkin, A.F., Schnall, A.H., Podgornik, M.N., Cruz, M.A., Horney, J.A., Zane, D., Roisman, R., Greenspan, J.R., Thoroughman, D., Anderson, H.A., Wells, E.V., Simms E.F.: The role of applied epidemiology methods in the disaster management cycle. Am. J. Public Health 104(10), 2092–2102 (2014)CrossRefGoogle Scholar
- 6.Wang, W., Chen, L., Thirunarayan, K., Sheth, A.P.: Harnessing twitter ‘Big Data’ for automatic emotion identification. In: IEEE International Conference on Social Computing (SocialCom) (2012)Google Scholar
- 7.Lamy, F.R., Daniulaityte, R., Nahhas, R.W., Barratt, M.J., Smith, A.G., Sheth, A., Martins, S.S., Boyer, E.W., Carlson, R.G.: Increases in synthetic cannabinoids-related harms: results from a longitudinal web-based content analysis. Int. J. Drug Policy (2017)Google Scholar
- 8.Sheth, A., Kapanipathi, P.: Semantic filtering for social data. IEEE Internet Comput. (2016)Google Scholar
- 9.Kapanipathi, P., Orlandi, F., Sheth, A., Passant A.: Personalized filtering of the twitter stream. In: SPIM Workshop at ISWC 2011 (2011)Google Scholar
- 10.Kapanipathi, P., Jain, P., Venkataramani, C., Sheth, A.: User interests identification on twitter using a hierarchical knowledge base. In: European Semantic Web Conference (2014)Google Scholar
- 11.Cameron, D., Smith, G.A., Daniulaityte, R., Sheth, A.P., Dave, D., Chen, L., Anand, G., Carlson, R., Watkins, K.Z., Falck, R.: PREDOSE: a semantic web platform for drug abuse epidemiology using social media. J. Biomed. Inform. 46, 985–997 (2013)CrossRefGoogle Scholar
- 12.Saif, H.: Semantic Sentiment Analysis in Social Streams. IOS Press, Amsterdam (2017)Google Scholar
- 13.Wijeratne, S., Sheth, A., Bhatt, S., Balasuriya, L., Al-Olimat, H.S., Gaur, M., Yazdavar, A.H., Thirunarayan, K.: Feature engineering for twitter-based applications. In: Feature Engineering for Machine Learning and Data Analytics, p. 35 (2017)Google Scholar
- 14.Gimpel, K., Schneider, N., O ’connor, B., Das, D., Mills, D., Eisenstein, J., Heilman, M., Yogatama, D., Flanigan, J., Smith, N.A.: Part-of-speech tagging for twitter: annotation, features, and experiments. In: Proceedings of ACL (2011)Google Scholar
- 15.Wagner, C., Asur, S., Hailpern, J.: Religious politicians and creative photographers: automatic user categorization in twitter. In: SocialCom (2013)Google Scholar
- 16.Wang, X., Wei, F., Liu, X., Zhou, M., Zhang, M.: Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. ACM, New York (2011)Google Scholar
- 17.Davidov, D., Tsur, O., Rappoport, A.: Enhanced sentiment learning using twitter hashtags and smileys. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 241–249. ACM, New York (2010)Google Scholar
- 18.Kouloumpis, E., Wilson, T., Moore, J.: Twitter sentiment analysis: the good the bad and the omg! In: Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (ICWSM 11), pp. 538–541 (2011)Google Scholar
- 19.Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the 20th International Conference on World Wide Web. (2011)Google Scholar
- 20.Morstatter, F., Pfeffer, J., Liu, H., Carley, K.M.: Is the sample good enough? Comparing data from twitter’s streaming API with twitter’s firehose. In: ICWSM, pp. 400–408 (2013)Google Scholar
- 21.Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. Technical Report (2009)Google Scholar
- 22.Agarwal, A., Xie, B., Vovsha, I.: Sentiment analysis of twitter data. In: Proceedings of the Workshop on Language in Social Media (LSM 2011), pp. 30–38 (2011)Google Scholar
- 23.Suh, B., Hong, L., Pirolli, P., Chi, E.H.: Want to be retweeted? Large scale analytics on factors impacting retweet in twitter network. In: IEEE International Conference on Social Computing Social Computing (SocialCom) (2010)Google Scholar
- 24.Naveed, N., Gottron, T., Kunegis, J., Alhadi, A.C.: Bad news travel fast : a content-based analysis of interestingness on twitter. In: Proceedings of the 3rd International Web Science Conference. ACM, New York (2011)Google Scholar
- 25.Thomas, K., Grier, C., Paxson, V.: Suspended accounts in retrospect: an analysis of twitter spam. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement (2011)Google Scholar
- 26.Liu, K.-L., Li, W.-J., Guo, M.: Emoticon smoothed language models for twitter sentiment analysis. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)Google Scholar
- 27.Zhai, C., Lafferty, J., Lafferty, J., Zhai, C.: A study of smoothing methods for language models applied to information retrieval. ACM Trans. Inform. Syst. 22(2), 179–214 (2004)CrossRefGoogle Scholar
- 28.Boia, M., Faltings, B.: A :) is worth a thousand words: how people attach sentiment to emoticons and words in tweets. In: SocialCom (2013)Google Scholar
- 29.Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREc, vol. 10 (2010)Google Scholar
- 30.Kelly, R., Watts, L.: Characterising the inventive appropriation of emoji as relationally meaningful in mediated close personal relationships. In: Experiences of Technology Appropriation: Unanticipated Users, Usage, Circumstances, and Design (2015)Google Scholar
- 31.Novak, P.K., Smailović, J., Sluban, B., Mozetič, I.: Sentiment of emojis. PLOS One (2015)Google Scholar
- 32.Miller, H., Thebault-Spieker, J., Chang, S., Johnson, I., Terveen, L., Hecht, B.: ‘Blissfully happy’ or ‘ready to fight’: varying interpretations of emoji. In: International AAAI Conference on Web and Social Media, ICWSM, pp. 259–268 (2016)Google Scholar
- 33.Wijeratne, S., Balasuriya, L., Sheth, A., Doran, D.: EmojiNet: an open service and API for emoji sense discovery. In: ICWSM (2017)Google Scholar
- 34.Varol, O., Ferrara, E., Menczer, F., Flammini, A.: Early detection of promoted campaigns on social media. EPJ Data Sci. 6(1), 13 (2017)CrossRefGoogle Scholar
- 35.Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Networks 179, 215–239 (1978)CrossRefGoogle Scholar
- 36.Freeman, L.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)CrossRefGoogle Scholar
- 37.Bonacich, P.: Power and centrality : a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987)CrossRefGoogle Scholar
- 38.Lawyer, G.: Understanding the influence of all nodes in a network. Nat. Sci. Rep. (2015)Google Scholar
- 39.Pennacchiotti, M., Popescu, A.-M.: Democrats, republicans and starbucks afficionados: user classification in twitter. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2011)Google Scholar
- 40.Irfan, R., King, C.K., Grages, D., Ewen, S., Khan, S.U., Madani, S.A., Kolodziej, J., Wang, L., Chen, D., Rayes, A., Tziritas, N., Xu, C.-Z., Zomaya, A.Y., Alzahrani, A.S., Li, H.X.: A survey on text mining in social networks. Knowl. Eng. Rev. 000, 1–24 (2004)Google Scholar
- 41.Nassirtoussi, A.K., Aghabozorgi, S., Wah, T.Y., Chek, D., Ngo, L.: Text mining for market prediction: a systematic review. Expert Syst. Appl. 41, 7653–7670 (2014)CrossRefGoogle Scholar
- 42.Franch, F.: (Wisdom of the crowds) : 2010 UK election prediction with social media. J. Inform. Technol. Polit. 10(1), 57–71 (2013)CrossRefGoogle Scholar
- 43.Bravo-Marquez, F., Gayo-Avello, D., Mendoza, M., Poblete, B.: Opinion dynamics of elections in twitter. In: Eighth Latin American Web Congress (2012)Google Scholar
- 44.Hong, L., Dan, O., Davison, B.: Predicting popular messages in twitter. In: WWW (2011)Google Scholar
- 45.Sokolova, M., Huang, K., Matwin, S., Ramisch, J., Sazonova, V., Black, R., Orwa, C., Ochieng, S., Sambuli, N.: Topic modelling and event identification from twitter textual data (2016). ArXiv preprintGoogle Scholar
- 46.Dumais, S.T.: Latent semantic analysis. Annu. Rev. Inform. Sci. Technol. 3(11), 4356 (2008)Google Scholar
- 47.Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. Adv. Neural Inf. Proces. Syst. (2013)Google Scholar
- 48.Wijeratne, S., Balasuriya, L., Doran, D., Sheth, A., Org, A.: Word embeddings to enhance twitter gang member profile identification. In: IJCAI Workshop on Semantic Machine Learning (2016)Google Scholar
- 49.Balasuriya, L., Wijeratne, S., Doran, D., Sheth, A.: Finding street gang members on twitter. In: ASONAM (2016)Google Scholar
- 50.Sakaki, S., Miura, Y., Ma, X., Hattori, K., Ohkuma, T.: Twitter user gender inference using combined analysis of text and image processing. In: Proceedings of the 25th International Conference on Computational Linguistics, pp. 54–61 (2014)Google Scholar
- 51.Bontcheva, K., Derczynski, L., Funk, A., Greenwood, M.A., Maynard, D., Aswani, N.: TwitIE : an open-source information extraction pipeline for microblog text. In: Proceedings of Recent Advances in Natural Language Processing, pp. 83–90 (2013)Google Scholar
- 52.Mitra, T., Gilbert, E.: CREDBANK: a large-scale social media corpus with associated credibility annotations. In: ICWSM (2016)Google Scholar
- 53.De Choudhury, M., Gamon, M., Counts, S., Horvitz, E.: Predicting depression via social media. In: ICWSM (2013)Google Scholar
- 54.Lewenberg, Y., Bachrach, Y., Volkova, S.: Using emotions to predict user interest areas in online social networks. In: Data Science and Advanced Analytics (DSAA) (2015)Google Scholar
- 55.Wang, H., Can, D., Kazemzadeh, A., Bar, F., Narayanan, S.: A system for real-time twitter sentiment analysis of 2012 U.S. Presidential election cycle. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pp. 115–120 (2012)Google Scholar
- 56.Ebrahimi, M., Yazdavar, A.H., Sheth, A.: On the challenges of sentiment analysis for dynamic events. IEEE Intell. Syst. (2017)Google Scholar
- 57.Vieweg, S., Hughes, A.L., Starbird, K., Palen, L.: Microblogging during two natural hazards events: what twitter may contribute to situational awareness. In: CHI - Crisis Informatics (2010)Google Scholar
- 58.Chen, L., Wang, W., Sheth, A.P.: Are twitter users equal in predicting elections? A study of user groups in predicting 2012 U.S. Republican Presidential primaries. In: Social Informatics (2012)Google Scholar
- 59.De Choudhury, M., Jhaver, S., Sugar, B., Weber, I.: Social media participation in an activist movement for racial equality. In: ICSWM, pp. 92–101 (2016)Google Scholar
- 60.Purohit, H., Hampton, A., Shalin, V.L., Sheth, A.P., Flach, J., Bhatt, S.: What kind of #conversation is twitter? Mining #psycholinguistic cues for emergency coordination. Comput. Hum. Behav. 29, 2438–2447 (2013)CrossRefGoogle Scholar
- 61.Purohit, H., Hampton, A., Bhatt, S., Shalin, V.L., Sheth, A.P., Flach, J.M.: Identifying seekers and suppliers in social media communities to support crisis coordination. In: Computer Supported Cooperative Work (CSCW) (2014)Google Scholar
- 62.Purohit, H., Bhatt, S., Hampton, A., Shalin, V.L., Sheth, A.P.: With whom to coordinate, why and how in ad- hoc social media communications during crisis response. In: Proceedings of the 11th International ISCRAM Conference, pp. 787–791 (2014)Google Scholar
- 63.Bhatt, S., Purohit, H., Hampton, A.: Assisting coordination during crisis: a domain ontology based approach to infer resource needs from tweets. In: Web Science (2014)Google Scholar
- 64.Nguyen, L.T., Wu, P., Chan, W., Peng, W., Zhang, Y.: Predicting collective sentiment dynamics from time-series social media. In: Proceedings of the First International Workshop on Issues of Sentiment Discovery and Opinion Mining (WISDOM), pp. 6:1–6:8 (2012)Google Scholar
- 65.Stojanovski, D., Strezoski, G., Madjarov, G., Dimitrovski, I.: Finki at SemEval-2016 task 4: deep learning architecture for twitter sentiment analysis. In: Proceedings of SemEval, pp. 149–154 (2016)Google Scholar
- 66.Esuli, A., Sebastiani, F., Nazionale, C., Ricerche, D.: Optimizing text quantifiers for multivariate loss functions. ACM Trans. Knowl. Discov. Data. VV 26 (2015)Google Scholar
- 67.Griffiths, T.L., Steyvers, M., Tenenbaum, J.B.: Topics in semantic representation. Psychol. Rev. (2007)Google Scholar
- 68.Chen, L., Org, C., Wang, W., Org, W., Nagarajan, M., Wang, S., Sheth, A.P., Org, A.: Extracting diverse sentiment expressions with target-dependent polarity from twitter. In: Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media (2012)Google Scholar
- 69.Hong, L., Davison, B.D.: Empirical study of topic modeling in twitter. In: 1st Workshop on Social Media Analytics (SOMA’10) (2010)Google Scholar
- 70.Zhao, W.X., Jiang, J., He, J., Song, Y., Achananuparp, P., Lim, E.-P., Li, X.: Topical keyphrase extraction from twitter. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pp. 379–388 (2011)Google Scholar
- 71.Wang, X., Gerber, M.S., Brown, D.E.: Automatic crime prediction using events extracted from twitter posts. In: International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction. Springer, Berlin (2012)CrossRefGoogle Scholar
- 72.Bhattacharya, N., Arpinar, I., Kursuncu, U.: Real time evaluation of quality of search terms during query expansion for streaming text data using velocity and relevance. In: Proceedings - IEEE 11th International Conference on Semantic Computing, ICSC 2017 (2017)Google Scholar
- 73.Phillips, L., Dowling, C., Shaffer, K., Hodas, N., Volkova, S.: Using social media to predict the future: a systematic literature review (2017). Arxiv preprintGoogle Scholar
- 74.Robillard, J.M., Johnson, T.W., Hennessey, C., Beattie, B.L., Illes, J.: Aging 2.0: health information about dementia on twitter. Plos One 20(87) (2013)Google Scholar
- 75.Prieto, V.M., Rgio Matos, S., Lvarez, M., Cacheda, F., Oliveira, J.L., Añ, J.A.: Twitter: a good place to detect health conditions. PLoS ONE 9(1) (2014)CrossRefGoogle Scholar
- 76.Yazdavar, A.H., Al-Olimat, H.S., Ebrahimi, M., Bajaj, G., Banerjee, T., Thirunarayan, K., Pathak, J., Sheth, A.: Semi-supervised approach to monitoring clinical depressive symptoms in social media. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (2017)Google Scholar
- 77.Coppersmith, G., Dredze, M., Harman, C., Hollingshead Ihmc, K.: From ADHD to SAD: analyzing the language of mental health on twitter through self-reported diagnoses. In: Proceedings of the 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, pp. 1–10 (2015)Google Scholar
- 78.Do, T.H., Nguyen, D.M., Tsiligianni, E., Cornelis, B., Deligiannis, N.: Multiview deep learning for predicting twitter users’ location (2017). Arxiv preprintGoogle Scholar
- 79.Lau, J.H., Baldwin, T.: An empirical evaluation of doc2vec with practical insights into document embedding generation (2016). Arxiv preprintGoogle Scholar
- 80.Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)Google Scholar
- 81.Bo, H., Cook, P., Imoth, T., Dw, B.: Geolocation prediction in social media data by finding location indicative words. In: Proceedings of COLING 2012, pp. 1045–1062 (2012)Google Scholar
- 82.Daniulaityte, R., Nahhas, R.W., Wijeratne, S., Carlson, R.G., Lamy, F.R., Martins, S.S., Boyer, E.W., Smith, G.A., Sheth, A.: Time for dabs: analyzing twitter data on marijuana concentrates across the U.S. HHS public access. Drug Alcohol Depend. 155, 307–311 (2015)Google Scholar
- 83.Lamy, F.R., Daniulaityte, R., Sheth, A., Nahhas, R.W., Martins, S.S., Boyer, E.W., Carlson Francois R Lamy, R.G.: Those edibles hit hard: exploration of twitter data on cannabis edibles in the U.S HHS public access. Drug Alcohol Depend. 1(164), 64–70 (2016)Google Scholar
- 84.Howard, P.N., Hussain, M., Mari, W.: Opening closed regimes what was the role of social media during the Arab Spring? In: Project on Information Technology & Political Islam (2011)Google Scholar
- 85.Tufekci, Z.: Big questions for social media big data: representativeness, validity and other methodological pitfalls. In: ICWSM (2014)Google Scholar
- 86.Arpinar, I., Kursuncu, U., Achilov, D.: Social media analytics to identify and counter Islamist extremism: systematic detection, evaluation, and challenging of extremist narratives online. In: Proceedings - 2016 International Conference on Collaboration Technologies and Systems, CTS 2016 (2016)Google Scholar
- 87.Haciyakupoglu, G., Zhang, W.: Social media and trust during the Gezi protests in turkey. J. Comput. Mediat. Commun. 20(4), 450–466 (2015)CrossRefGoogle Scholar
- 88.Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ. Perspect. 31(2, Spring), 211–236 (2017)Google Scholar
- 89.Hoang, T.-A., Cohen, W.W., Lim, E.-P., Pierce, D., Redlawsk, D.P.: Politics, sharing and emotion in microblogs. In: ASONAM (2013)Google Scholar
- 90.Makazhanov, A., Rafiei, D.: Predicting political preference of twitter users. Soc. Netw. Anal. Min. (2014)Google Scholar
- 91.Cohen, R., Ruths, D.: Classifying political orientation on twitter: it’s not easy! In: ICWSM (2013)Google Scholar
- 92.Xu, J.-M., Jun, K.-S., Zhu, X., Bellmore, A.: Learning from bullying traces in social media. In: 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 656–666 (2012)Google Scholar
- 93.Chen, Y., Zhu, S., Zhou, Y., Xu, H.: Detecting offensive language in social media to protect adolescent online safety. In: Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference on and 2012 International Conference on Social Computing (SocialCom) (2012)Google Scholar
- 94.Edupuganti, V.: Harassment detection on twitter using conversations. Ph.D. dissertation (2017)Google Scholar
- 95.Kandakatla, R.: Identifying offensive videos on YouTube. Ph.D. dissertation (2016)Google Scholar
- 96.Wijeratne, S., Doran, D., Sheth, A., Dustin, J.L.: Analyzing the social media footprint of street gangs. In: Intelligence and Security Informatics (ISI) (2015)Google Scholar
- 97.Blevins, T., Kwiatkowski, R., Macbeth, J., Mckeown, K., Patton, D., Rambow, O.: Automatically processing tweets from gang-involved youth: towards detecting loss and aggression. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 2196–2206 (2016)Google Scholar
- 98.Bushman B., Huesmann, L.: Short-term and long-term effects of violent media on aggression in children and adults. Arch. Pediatr. Adolesc. Med. 160, 348–352 (2006)CrossRefGoogle Scholar
- 99.Ni, M., He, Q., Gao, J.: Using social media to predict traffic flow under special event conditions. In: The 93rd Annual Meeting of Transportation Research Board (2014)Google Scholar
- 100.Krishnamurthy, R., Kapanipathi, P., Sheth, A.P., Thirunarayan, K., Sheth, A.: Location prediction of twitter users using wikipedia (2014)Google Scholar
- 101.Mahmud, J., Nichols, J., Drews, C.: Where is this tweet from? Inferring home locations of twitter users. In: ICWSM (2012)Google Scholar
- 102.Al-Olimat, H.S., Thirunarayan, K., Shalin, V., Sheth, A.: Location name extraction from targeted text streams using Gazeeer-based statistical language models, vol. 11, no. 17 (2017). Arxiv preprintGoogle Scholar
- 103.Haklay, M., Weber, P.: OpenStreetMap: user-generated street maps. IEEE Pers. Commun. 7, 12–18 (2008)Google Scholar
- 104.Ahlers, D.: Assessment of the accuracy of GeoNames gazetteer data. In: GIR (2013)Google Scholar
- 105.Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia ’ a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web, vol. 1, pp. 1–5 (2012)Google Scholar
- 106.Lee, M.D., Lee, M.N.: The relationship between crowd majority and accuracy for binary decisions. Judgm. Decis. Mak. 12(4), 328–343 (2017)Google Scholar
- 107.Bhatt, S., Minnery, B., Nadella, S., Bullemer, B., Shalin, V., Sheth, A.: Enhancing crowd wisdom using measures of diversity computed from social media data. In: Proceedings of the International Conference on Web Intelligence (2017)Google Scholar
- 108.Smith, A., Gaur, M.: What’s my age?: Predicting twitter user’s age using influential friend network and DBpedia (2018). Arxiv preprintGoogle Scholar
- 109.Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: Encyclopedia of Database Systems. Springer, Berlin (2009)Google Scholar
- 110.Nguyen, D., Smith, N.A., Rosé, C.P.: Author age prediction from text using linear regression. In: Proceedings of the 5th ACL-HLT Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities. Association for Computational Linguistics (2011)Google Scholar
- 111.Chen, C., Chang, Y., Ricanek, K., Wang, Y.: Face age estimation using model selection. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, pp. 93–99 (2010)Google Scholar
- 112.Culotta, A., Kumar Ravi, N., Cutler, J.: Predicting twitter user demographics using distant supervision from website traffic data. J. Artif. Intell. Res. 55, 389–408 (2016)CrossRefGoogle Scholar
- 113.Zhang, J., Hu, X., Zhang, Y., Liu, H.: Your age is no secret: Inferring microbloggers’ ages via content and interaction analysis. In: Proceedings of the 10th International Conference on Web and Social Media, ICWSM 2016, pp. 476–485 (2016)Google Scholar
- 114.Nguyen, D., Gravel, R., Trieschnigg, D., Meder, T.: How old do you think i am?”: a study of language and age in twitter. In: ICWSM (2013)Google Scholar
- 115.Bamman, D., Eisenstein, J., Schnoebelen, T.: Gender in twitter: styles, stances, and social networks. In: CoRR (2012)Google Scholar
- 116.Li, W., Dickinson, M.: Gender prediction for Chinese social media data. In: Proceedings of Recent Advances in Natural Language Processing (2017), pp. 438–445Google Scholar
- 117.Li, L., Sun, M., Liu, Z.: Discriminating gender on Chinese microblog: a study of online behaviour, writing style and preferred vocabulary. In: 10th International Conference on Natural Computation (ICNC) (2014)Google Scholar
- 118.Volkova, S., Bell, E.: Identifying effective signals to predict deleted and suspended accounts on twitter across languages. In: ICWSM, Association for the Advancement of Artificial Intelligence, pp. 290–298 (2017)Google Scholar
- 119.Dickerson, J.P., Kagan, V., Subrahmanian, V.S.: Using sentiment to detect bots on twitter: are humans more opinionated than bots? In: ASONAM (2014)Google Scholar
- 120.Varol, O., Ferrara, E., Davis, C.A., Menczer, F., Flammini, A.: Online human-bot interactions: detection, estimation, and characterization. In: ICWSM (2017)Google Scholar
- 121.Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 675–684. ACM, New York (2011)Google Scholar
- 122.Ross, J., Thirunarayan, K.: Features for ranking tweets based on credibility and newsworthiness. In: International Conference on Collaboration Technologies and Systems (2016)Google Scholar
- 123.Gupta, A., Kumaraguru, P., Castillo, C., Meier, P.: TweetCred: a real-time web-based system for assessing credibility of content on twitter. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8851, November 2014Google Scholar
- 124.Gupta, A., Kumaraguru, P.: Credibility ranking of tweets during high impact events. In: PSOSM (2012)Google Scholar
- 125.Gupta, A., Lamba, H., Kumaraguru, P., Joshi, A.: Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In: WWW (2013)Google Scholar
- 126.Weng, L., Menczer, F., Ahn, Y.-Y.: Predicting successful memes using network and community structure. In: IC, pp. 535–544 (2014)Google Scholar
- 127.Kobayashi, R., Lambiotte, R.: TiDeH: time-dependent Hawkes process for predicting retweet dynamics. In: ICWSM, pp. 191–200 (2016)Google Scholar
- 128.Tsur, O., Rappoport, A.: Don’t let me be #misunderstood: linguistically motivated algorithm for predicting the popularity of textual memes. In: ICWSM, Ninth International AAAI Conference on Web and Social Media, pp. 426–435 (2015)Google Scholar
- 129.Ruan, Y., Purohit, H., Fuhry, D., Parthasarathy, S., Sheth, A.P., Sheth, A.: Prediction of topic volume on twitter. In: 4th International ACM Conference on Web Science, pp. 397–402 (2012)Google Scholar
- 130.Pattisapu, N., Gupta, M., Kumaraguru, P., Varma, V.: Medical persona classification in social media. In: ASONAM (2017)Google Scholar
- 131.Gilani, Z., Kochmar, E., Crowcroft, J.: Classification of twitter accounts into automated agents and human users. In: ASONAM (2017)Google Scholar
- 132.Alowibdi, J.S., Buy, U.A., Yu, P.S., Stenneth, L.: Detecting deception in online social networks. In: ASONAM (2014)Google Scholar
- 133.Mahmud, J., Fei, G., Xu, A., Pal, A., Zhou, M.: Predicting attitude and actions of twitter users. In: Proceedings of the 21st International Conference on Intelligent User Interfaces - IUI’16, pp. 1–6. ACM, New York (2016)Google Scholar
- 134.Georgiev, P., Noulas, A., Mascolo, C.: Where businesses thrive: predicting the impact of the olympic games on local retailers through location-based services data, pp. 151–160. In: ICWSM (2014)Google Scholar
- 135.Yang, X., Mccreadie, R., Macdonald, C., Ounis, I.: Transfer learning for multi-language twitter election classification. In: ASONAM (2017)Google Scholar
- 136.Korolov, R., Lu, D., Wang, J., Zhou, G., Bonial, C., Voss, C., Kaplan, L., Wallace, W., Han, J., Ji, H.: On predicting social unrest using social media. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (2016)Google Scholar
- 137.Kallus, N.: Predicting crowd behavior with big public data. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 625–630. ACM, New York (2014)Google Scholar
- 138.Echeverria, J., Zhou, S.: Discovery, retrieval, and analysis of the ‘star wars’ botnet in twitter. In: ASONAM (2017)Google Scholar
- 139.Gao, W., Sebastiani, F.: Tweet sentiment: from classification to quantification. In: ASONAM (2015)Google Scholar
- 140.Hassan, A., Abbasi, A., Zeng, D.: Twitter sentiment analysis: a bootstrap ensemble framework. In: SocialCom (2013)Google Scholar
- 141.Kothari, A., Magdy, W., Darwish, K., Mourad, A., Taei, A.: Detecting comments on news articles in microblogs. In: ICWSM (2013)Google Scholar
- 142.Georgiou, T., Abbadi, A.E., Yan, X., George, J.: Mining complaints for traffic-jam estimation: a social sensor application. In: ASONAM (2015)Google Scholar
- 143.Aiswal, A.J., Peng, W., Sun, T.: Predicting time-sensitive user locations from social media. In: ASONAM (2013)Google Scholar
- 144.Rout, D., Preoiuc-Pietro, D., Bontcheva, K., Cohn, T.: Where’s @wally? A classification approach to geolocating users based on their social ties. In: 24th ACM Conference on Hypertext and Social Media, Paris (2013)Google Scholar
- 145.Rath, B., Gao, W., Ma, J., Srivastava, J.: From retweet to believability: utilizing trust to identify rumor spreaders on twitter. In: ASONAM (2017)Google Scholar
- 146.Bizid, I., Nayef, N., Boursier, P., Faiz, S., Morcos, J.: Prominent users detection during specific events by learning on-and off-topic features of user activities. In: ASONAM (2015)Google Scholar
- 147.Ferrara, E., Jafariasbagh, M., Varol, O., Qazvinian, V., Menczer, F., Flammini, A.: Clustering memes in social media. In: ASONAM (2013)Google Scholar
- 148.Yamamoto, S., Satoh, T.: Hierarchical estimation framework of multi-label classifying: a case of tweets classifying into real life aspects. In: ICWSM (2015)Google Scholar
- 149.Beykikhoshk, A., Arandjelovi, O., Phung, D., Venkatesh, S.: Data-mining twitter and the autism spectrum disorder: a pilot study. In: ASONAM (2014)Google Scholar
- 150.Yin, Z., Chen, Y., Fabbri, D., Sun, J., Malin, B.: #PrayForDad: learning the semantics behind why social media users disclose health information. In: ICWSM (2016)Google Scholar
- 151.Daniulaityte, R., Chen, L., Lamy, F.R., Carlson, R.G., Thirunarayan, K., Sheth, A.: ‘When ‘bad’ is ‘good’: identifying personal communication and sentiment in drug-related tweets. JMIR Public Health Surveill. (2016)Google Scholar
- 152.Hu, Y., Farnham, S., Talamadupula, K.: Predicting user engagement on twitter with real-world events. In: ICWSM (2015)Google Scholar
- 153.Kessler, J.S., Eckert, M., Clark, L., Nicolov Power, N.J.: The ICWSM 2010 JDPA sentiment corpus for the automotive domain. In: 4th International AAAI Conference on Weblogs and Social Media Data Workshop Challenge (ICWSM-DWC) (2010)Google Scholar
- 154.Covington, P., Adams, J., Sargin, E.: Deep neural networks for youtube recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems (2016)Google Scholar
- 155.Korpusik, M., Sakaki, S., Chen, F., Chen, Y.-Y.: Recurrent neural networks for customer purchase prediction on twitter. In: CBRecSys@ RecSys, pp. 47–50 (2016)Google Scholar
- 156.Tieleman, T., Hinton, G.: Divide the gradient by a running average of its recent magnitude. In: COURSERA: Neural Networks for Machine Learning (2012)Google Scholar