Advertisement

Dengue: A Silent Killer, a Worldwide Threat

  • S. Sakinah
  • Sharmilah Kumari Kumaran
  • Pooi-Ling Mok
  • Akon Higuchi
  • Giovanni Benelli
  • S. Suresh Kumar
Chapter
Part of the Parasitology Research Monographs book series (Parasitology Res. Monogr., volume 10)

Abstract

Nowadays, the timely and effective management of mosquito-borne diseases is a crucial public health challenge to deal with. Dengue is an emerging mosquito-borne infectious disease transmitted by Aedes species. Around 3.9 billion people from more than 128 countries were affected by dengue fever. Recent research outlined that dengue can damage the platelet, disrupting the endothelium bed and provoking immune responses, resulting in severe illness. The illness extends to other vital organs, resulting in homeostasis imbalance. Currently, no vaccines, drugs, or vector control measures showed full efficacy to prevent or manage this arbovirus threat. The present chapter discussed our knowledge about dengue basic biology, epidemiology, clinical aspects, and vector control measures. In the final section, several issues to be addressed by further research are critically analyzed.

Keywords

Aedes aegypti Aedes albopictus Arbovirus Culicidae Epidemiology Invasive mosquito species Pesticides Vaccine 

Notes

Acknowledgments

This work was supported by the Putra Grant, Universiti Putra Malaysia, Malaysia (9470200); the authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project No. RG-1435-065.

Conflict of Interest: The authors declare that there is no conflict of interest regarding the publication of this study.

References

  1. Achee NL et al (2015) A critical assessment of vector control for dengue prevention. PLoS Negl Trop Dis 9(5):1–19.  https://doi.org/10.1371/journal.pntd.0003655 CrossRefGoogle Scholar
  2. Ahmed S (2003) Vertical transmission of dengue: First case report from Bangladesh. Southeast Asian J Trop Med Public Health 34(4):800–803PubMedGoogle Scholar
  3. An J, Kimura-Kuroda J, Hirabayashi Y, Yasui K (1999) Development of a novel mouse model for dengue virus infection. Virology 263(1):70–77  https://doi.org/10.1006/viro.1999.9887 CrossRefGoogle Scholar
  4. Assinger A (2014) Platelets and infection—an emerging role of platelets in viral infection. Front Immunol 5(649):10–12.  https://doi.org/10.3389/fimmu.2014.00649 CrossRefGoogle Scholar
  5. Åström C et al (2012) Potential distribution of dengue fever under scenarios of climate change and economic development. Ecohealth 9(4):448–454.  https://doi.org/10.1007/s10393-012-0808-0 CrossRefPubMedGoogle Scholar
  6. Basu A et al (2008) Dengue 2 virus inhibits in vitro megakaryocytic colony formation and induces apoptosis in thrombopoietin-inducible megakaryocytic differentiation from cord blood CD34+ cells. FEMS Immunol Med Microbiol 53(1):46–51.  https://doi.org/10.1111/j.1574-695X.2008.00399.x CrossRefPubMedGoogle Scholar
  7. Benelli G (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114(8):2801–2805CrossRefGoogle Scholar
  8. Benelli G (2018) Managing mosquitoes and ticks in a rapidly changing world – facts and trends. Saudi J Biol Sci.  https://doi.org/10.1016/j.sjbs.2018.06.007
  9. Benelli G, Beier JC (2017) Current vector control challenges in the fight against malaria. Acta Trop 174:91–96.  https://doi.org/10.1016/j.actatropica.2017.06.028 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Benelli G, Mehlhorn H (2016) Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115(5):1747–1754CrossRefGoogle Scholar
  11. Benelli G, Jeffries CL, Walker T (2016) Biological control of mosquito vectors: past, present, and future. Insects 7(4):52.  https://doi.org/10.3390/insects7040052 CrossRefGoogle Scholar
  12. Benelli G et al (2018) Mosquito control with green nanopesticides: towards the one health approach? A review of non-target effects. Environ Sci Pollut Res 25:10184–10206.  https://doi.org/10.1007/s11356-017-9752-4 CrossRefGoogle Scholar
  13. Bhamarapravati N (1989) Hemostatic defects in dengue hemorrhagic fever. Rev Infect Dis 11:826–829.  https://doi.org/10.1093/clinids/11.Supplement_4.S826 CrossRefGoogle Scholar
  14. Bhamarapravati N, Tuchinda P, Boonyapaknavik V (1967) Pathology of Thailand haemorrhagic fever: a study of 100 autopsy cases. Ann Trop Med Parasitol 61(4):500–510.  https://doi.org/10.1080/00034983.1967.11686519 CrossRefPubMedGoogle Scholar
  15. Bharaj P et al (2008) Concurrent infections by all four dengue virus serotypes during an outbreak of dengue in 2006 in Delhi, India. Virol J 5(10):1669–1670.  https://doi.org/10.1186/1743-422X-5-1 CrossRefGoogle Scholar
  16. Bielefeldt-Ohmann H (1997) Pathogenesis of dengue virus diseases: missing pieces in the jigsaw. Trends Microbiol 5(10):409–413.  https://doi.org/10.1016/S0966-842X(97)01126-8 CrossRefPubMedGoogle Scholar
  17. Biron CA et al (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17(1):189–220.  https://doi.org/10.1146/annurev.immunol.17.1.189 CrossRefPubMedGoogle Scholar
  18. Bozza FA et al (2008) Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity. BMC Infect Dis 8(86):1–11.  https://doi.org/10.1186/1471-2334-8-86 CrossRefGoogle Scholar
  19. Brady OJ et al (2012) Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 6(8):e1760.  https://doi.org/10.1371/journal.pntd.0001760 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cardier JE et al (2006) Evidence of vascular damage in dengue disease: demonstration of high levels of soluble cell adhesion molecules and circulating endothelial cells. Endothelium 13(5):335–340.  https://doi.org/10.1080/10623320600972135 CrossRefPubMedGoogle Scholar
  21. Cardosa MJ (1998) Dengue vaccine design: issues and challenges. Br Med Bull 54(2):395–405CrossRefGoogle Scholar
  22. Chaturvedi UC et al (1999) Sequential production of cytokines by dengue virus-infected human peripheral blood leukocyte cultures. J Med Virol 59(3):335–340.  https://doi.org/10.1002/(SICI)1096-9071(199911)59:3<335::AID-JMV13>3.0.CO;2-E CrossRefPubMedGoogle Scholar
  23. Chen H-C et al (2007) Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. J Virol 81(11):5518–5526.  https://doi.org/10.1128/JVI.02575-06 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Citarella BF et al (1997) Interleukin-6 downregulates factor XII production by human hepatoma cell line (HepG2). Blood 90(4):1501–1507PubMedGoogle Scholar
  25. Couvelard A et al (1999) Report of a fatal case of dengue infection with hepatitis: demonstration of dengue antigens in hepatocytes and liver apoptosis. Hum Pathol 30(9):1106–1110.  https://doi.org/10.1016/S0046-8177(99)90230-7 CrossRefPubMedGoogle Scholar
  26. Dalrymple N, Mackow ER (2011) Productive dengue virus infection of human endothelial cells is directed by heparan sulfate-containing proteoglycan receptors. J Virol 85(18):9478–9485.  https://doi.org/10.1128/JVI.05008-11 CrossRefPubMedPubMedCentralGoogle Scholar
  27. de Angel RM, del Valle JR (2013) Dengue vaccines: strongly sought but not a reality just yet. PLoS Pathog 9(10):e1003551.  https://doi.org/10.1371/journal.ppat.1003551 CrossRefPubMedPubMedCentralGoogle Scholar
  28. de Araújo JMG et al (2009) A retrospective survey of dengue virus infection in fatal cases from an epidemic in Brazil. J Virol Methods 155(1):34–38.  https://doi.org/10.1016/j.jviromet.2008.09.023 CrossRefPubMedGoogle Scholar
  29. De Azeredo EL, Monteiro RQ, De-Oliveira Pinto LM (2015) Thrombocytopenia in dengue: Interrelationship between virus and the imbalance between coagulation and fibrinolysis and inflammatory mediators. Mediators Inflamm 2015:313842.  https://doi.org/10.1155/2015/313842 CrossRefPubMedPubMedCentralGoogle Scholar
  30. de Souza LJ et al (2007) The impact of dengue on liver function as evaluated by aminotransferase levels. Braz J Infect Dis 11(4):407–410.  https://doi.org/10.1590/S1413-86702007000400007 CrossRefPubMedGoogle Scholar
  31. Dorji T et al (2009) Diversity and origin of dengue virus serotypes 1, 2, and 3, Bhutan. Emerg Infect Dis 15(10):1630–1632.  https://doi.org/10.3201/eid1510.090123 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Elzey BD et al (2003) Platelet-mediated modulation of adaptive immunity: a communication link between innate and adaptive immune compartments. Immunity 19(1):9–19.  https://doi.org/10.1016/S1074-7613(03)00177-8 CrossRefPubMedGoogle Scholar
  33. Fink J et al (2007) Host gene expression profiling of dengue virus infection in cell lines and patients. PLoS Negl Trop Dis 1(2):e86.  https://doi.org/10.1371/journal.pntd.0000086 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ghosh K et al (2008) Imaging the interaction between dengue 2 virus and human blood platelets using atomic force and electron microscopy. J Electr Microsc 57(3):113–118.  https://doi.org/10.1093/jmicro/dfn007 CrossRefGoogle Scholar
  35. Gubler DJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10(2):100–103.  https://doi.org/10.1016/S0966-842X(01)02288-0 CrossRefPubMedGoogle Scholar
  36. Gubler D (2005) The emergence of epidemic dengue fever and dengue hemorrhagic fever in the Americas : a case of failed public health policy. Rev Panam Salud Publica 17(4):221–224.  https://doi.org/10.1590/S1020-49892005000400001 CrossRefPubMedGoogle Scholar
  37. Gubler DJ, Meltzer M (1999) Impact of dengue/dengue hemorrhagic fever on the developing world. Adv Virus Res 53(1):35–70.  https://doi.org/10.1016/S0065-3527(08)60342-5 CrossRefPubMedGoogle Scholar
  38. Guo C et al (2017) Global epidemiology of dengue outbreaks in 1990–2015: a systematic review and meta-analysis. Front Cell Infect Microbiol 7(317):1–11.  https://doi.org/10.3389/fcimb.2017.00317 CrossRefGoogle Scholar
  39. Halstead SB (2007) Dengue. Lancet 370(9599):1644–1652.  https://doi.org/10.1016/S0140-6736(07)61687-0 CrossRefPubMedGoogle Scholar
  40. Halstead SB (2016) Licensed dengue vaccine: public health conundrum and scientific challenge. Am J Trop Med Hyg 95(4):741–745.  https://doi.org/10.4269/ajtmh.16-0222 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Halstead SB, O’Rourke EJ (1977) Antibody-enhanced dengue virus infection in primate leukocytes. Nature 265(5596):739–741.  https://doi.org/10.1038/265739a0 CrossRefPubMedGoogle Scholar
  42. Harapan H et al (2017) Dengue vaccine acceptance and willingness to pay. Hum Vaccin Immunother 13(4):786–790.  https://doi.org/10.1080/21645515.2016.1259045 CrossRefPubMedGoogle Scholar
  43. Henchal EA, Putnak JR (1990) The dengue viruses. Clin Microbiol Rev 3(4):376–396CrossRefGoogle Scholar
  44. Huang YH et al (2000) Dengue virus infects human endothelial cells and induces IL-6 and IL-8 production. Am J Trop Med Hyg 63(1-2):71–75CrossRefGoogle Scholar
  45. IPCC (2007) Climate change 2007: the physical science basis. Intergovern Panel Climate Change 446(7137):727–728.  https://doi.org/10.1038/446727a CrossRefGoogle Scholar
  46. Kalayanarooj S et al (1997) Early clinical and laboratory indicators of acute dengue illness. J Infect Dis 176(2):313–321.  https://doi.org/10.1086/514047 CrossRefPubMedGoogle Scholar
  47. Kapur R, Semple JW (2017) Molecular and cellular biology of platelet formation: implications in health and disease. Platelet functions beyond hemostasis, pp. 221–237.  https://doi.org/10.1007/978-3-319-39562-3_10 CrossRefGoogle Scholar
  48. Krishnamurti C et al (2002) Platelet adhesion to dengue-2 virus-infected endothelial cells. Am J Trop Med Hyg 66(4):435–441.  https://doi.org/10.4269/ajtmh.2002.66.435 CrossRefPubMedGoogle Scholar
  49. Kurane I et al (1995) Flavivirus-cross-reactive, HLA-DR15-restricted epitope on NS3 recognized by human CD4+CD8-cytotoxic T lymphocyte clones. J Gen Virol 76(9):2243–2249.  https://doi.org/10.1099/0022-1317-76-9-2243 CrossRefPubMedGoogle Scholar
  50. La Russa VF, Innis BL (1995) 11 Mechanisms of dengue virus-induced bone marrow suppression. Baillieres Clin Haematol 8(1):249–270.  https://doi.org/10.1016/S0950-3536(05)80240-9 CrossRefPubMedGoogle Scholar
  51. Lai C-Y et al (2008) Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J Virol 82(13):6631–6643.  https://doi.org/10.1128/JVI.00316-08 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lanciotti RS, Gubler DJ, Trent DW (1997) Molecular evolution and phylogeny of dengue-4 viruses. J Gen Virol 78(9):2279–2286.  https://doi.org/10.1099/0022-1317-78-9-2279 CrossRefPubMedGoogle Scholar
  53. Lee LK et al (2012) Clinical relevance and discriminatory value of elevated liver aminotransferase levels for dengue severity. PLoS Negl Trop Dis 6(6):1–8.  https://doi.org/10.1371/journal.pntd.0001676 CrossRefGoogle Scholar
  54. Li N (2008) Platelet-lymphocyte cross-talk. J Leukoc Biol 83(5):1069–1078.  https://doi.org/10.1189/jlb.0907615 CrossRefPubMedGoogle Scholar
  55. Lin YL et al (1998) Study of dengue virus infection in SCID mice engrafted with human K562 cells. J Virol 72(12):9729–9737PubMedPubMedCentralGoogle Scholar
  56. Lin C-F et al (2006) Autoimmune pathogenesis in dengue virus infection. Viral Immunol 19(2):127–132.  https://doi.org/10.1089/vim.2006.19.127 CrossRefPubMedGoogle Scholar
  57. Mahalingam S, Herring BL, Halstead SB (2013) Call to action for dengue vaccine failure. Emerg Infect Dis 19(8):1335–1337.  https://doi.org/10.3201/eid1908.121864 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Marianneau P et al (1999) Infection of primary cultures of human Kupffer cells by dengue virus: no viral progeny synthesis, but cytokine production is evident. J Virol 73(6):5201–5206PubMedPubMedCentralGoogle Scholar
  59. Matsuda T et al (2005) Dengue virus-induced apoptosis in hepatic cells is partly mediated by Apo2 ligand/tumour necrosis factor-related apoptosis-inducing ligand. J Gen Virol 86(4):1055–1065.  https://doi.org/10.1099/vir.0.80531-0 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Murgue B et al (1997) Dengue virus inhibits human hematopoietic progenitor growth in vitro. J Infect Dis 175(6):1497–1501CrossRefGoogle Scholar
  61. Murphy BR, Whitehead SS (2011) Immune response to dengue virus and prospects for a vaccine. Annu Rev Immunol 29(1):587–619.  https://doi.org/10.1146/annurev-immunol-031210-101315 CrossRefPubMedGoogle Scholar
  62. Murray NEA, Quam MB, Wilder-Smith A (2013) Epidemiology of dengue: past, present and future prospects. Clin Epidemiol 5(1):299–309.  https://doi.org/10.2147/CLEP.S34440 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nielsen DG (2009) The relationship of interacting immunological components in dengue pathogenesis. Virol J 6(211):1–7.  https://doi.org/10.1186/1743-422X-6-211 CrossRefGoogle Scholar
  64. Noisakran S et al (2010) Cells in dengue virus infection in vivo. Adv Virol 2010:164878.  https://doi.org/10.1155/2010/164878 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Oishi K et al (2007) Dengue illness: clinical features and pathogenesis. J Infect Chemother 13(3):125–133.  https://doi.org/10.1007/s10156-007-0516-9 CrossRefPubMedGoogle Scholar
  66. Onlamoon N et al (2010) Dengue virus—induced hemorrhage in a nonhuman primate model. Blood 115(9):1823–1834.  https://doi.org/10.1182/blood-2009-09-242990 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Pascutti MF, Erkelens MN, Nolte MA (2016) Impact of viral infections on hematopoiesis: from beneficial to detrimental effects on bone marrow output. Front Immunol 7(364):1–12.  https://doi.org/10.3389/fimmu.2016.00364 CrossRefGoogle Scholar
  68. Patz JA, Reisen WK (2001) Immunology, climate change and vector-borne diseases. Trends Immunol 22(4):171–172.  https://doi.org/10.1016/S1471-4906(01)01867-1 CrossRefPubMedGoogle Scholar
  69. Póvoa TF et al (2014) The pathology of severe dengue in multiple organs of human fatal cases: histopathology, ultrastructure and virus replication. PLoS One 9(4):e83386.  https://doi.org/10.1371/journal.pone.0083386 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Priya SP et al (2017) Leptospirosis: molecular trial path and immunopathogenesis correlated with dengue, malaria and mimetic hemorrhagic infections. Acta Trop 176:206–223.  https://doi.org/10.1016/j.actatropica.2017.08.007 CrossRefPubMedGoogle Scholar
  71. Reiter P (2001) Climate change and mosquito-borne disease. Environ Health Perspect 109(Suppl. 1):141–161.  https://doi.org/10.2307/3434853 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Rosen L, Drouet MT, Deubel V (1999) Detection of dengue virus RNA by reverse transcription-polymerase chain reaction in the liver and lymphoid organs but not in the brain in fatal human infection. Am J Trop Med Hyg 61(5):720–724.  https://doi.org/10.4269/ajtmh.1999.61.720 CrossRefPubMedGoogle Scholar
  73. Rothman AL (2011) Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol 11(8):532–543.  https://doi.org/10.1038/nri3014 CrossRefPubMedGoogle Scholar
  74. Saito M et al (2004) Association of increased platelet-associated immunoglobulins with thrombocytopenia and the severity of disease in secondary dengue virus infections. Clin Exp Immunol 138(2):299–303.  https://doi.org/10.1111/j.1365-2249.2004.02626.x CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sakinah S et al (2017) Impact of dengue virus (serotype DENV-2) infection on liver of BALB/c mice: a histopathological analysis. Tissue Cell 49(1):86–94.  https://doi.org/10.1016/j.tice.2016.11.005 CrossRefPubMedGoogle Scholar
  76. Sato M, Suzuki S, Senoo H (2003) Hepatic stellate cells : unique characteristics in cell biology and phenotype characteristics of gene expression including cytoskeleton proteins in HSCs. Cell Struct Funct 28(2):105–112.  https://doi.org/10.1247/csf.28.105 CrossRefPubMedGoogle Scholar
  77. Seneviratne SL, Malavige GN, de Silva HJ (2006) Pathogenesis of liver involvement during dengue viral infections. Trans R Soc Trop Med Hyg 100(7):608–614.  https://doi.org/10.1016/j.trstmh.2005.10.007 CrossRefPubMedGoogle Scholar
  78. Sharma SK et al (2011) Clinical profile of dengue infection in patients with hematological diseases. Mediterr J Hematol Infect Dis 3(1):1–4.  https://doi.org/10.4084/MJHID.2011.039 CrossRefGoogle Scholar
  79. Shinji B (1989) Dengue virus, a flavivirus, propagates in human bone marrow progenitors and hematopoietic cell lines. Blood 74(4):1235–1240Google Scholar
  80. Srichaikul T, Nimmannitya S (2000) Haematology in dengue and dengue haemorrhagic fever. Baillière’s Best Pract Res Clin Haematol 13(2):261–276.  https://doi.org/10.1053/beha.2000.0073 CrossRefGoogle Scholar
  81. Sujitha V et al (2015) Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res 114(9):3315–3325.  https://doi.org/10.1007/s00436-015-4556-2 CrossRefPubMedGoogle Scholar
  82. Teo D, Ng LC, Lam S (2009) Is dengue a threat to the blood supply? Transfus Med 19(2):66–77.  https://doi.org/10.1111/j.1365-3148.2009.00916.x CrossRefPubMedPubMedCentralGoogle Scholar
  83. Thongtan T, Panyim S, Smith DR (2004) Apoptosis in dengue virus infected liver cell lines HepG2 and Hep3B. J Med Virol 72(3):436–444.  https://doi.org/10.1002/jmv.20004 CrossRefPubMedGoogle Scholar
  84. Tsai JJ et al (2011) Frequency alterations in key innate immune cell components in the peripheral blood of dengue patients detected by FACS analysis. J Innate Immun 3(5):530–540.  https://doi.org/10.1159/000322904 CrossRefPubMedGoogle Scholar
  85. Tsai JJ et al (2012) The importance of hematopoietic progenitor cells in dengue. Ther Adv Hematol 3(1):59–71.  https://doi.org/10.1177/2040620711417660 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Tuiskunen Bäck A, Lundkvist Å (2013) Dengue viruses – an overview. Infect Ecol Epidemiol 3(1):19839.  https://doi.org/10.3402/iee.v3i0.19839 CrossRefGoogle Scholar
  87. Von Hundelshausen P, Weber C (2007) Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 100(1):27–40.  https://doi.org/10.1161/01.RES.0000252802.25497.b7 CrossRefGoogle Scholar
  88. Wang E et al (2000) Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. J Virol 74(7):3227–3234.  https://doi.org/10.1128/JVI.74.7.3227-3234.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Whitehorn J, Farrar J (2010) Dengue. Br Med Bull 95(1):161–173.  https://doi.org/10.1093/bmb/ldq019 CrossRefPubMedGoogle Scholar
  90. WHO Initiative for Vaccine Research and World Health Organization, Department of Immunization Vaccines and Biologicals (2008) Guidelines for the clinical evaluation of dengue vaccines in endemic areas, p. 45Google Scholar
  91. Wilke AB, Beier JC, Benelli G (2018) Transgenic mosquitoes–fact or fiction? Trends Parasitol 34:456–465CrossRefGoogle Scholar
  92. World Health Organization (2009) Dengue: guidelines for diagnosis, treatment, prevention, and control, Special Programme for Research and Training in Tropical Diseases, p. x, 147. doi: WHO/HTM/NTD/DEN/2009.1
  93. Youssefian T et al (2002) Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartments and is enhanced by platelet activation. Blood 99(11):4021–4029.  https://doi.org/10.1182/blood-2001-12-0191 CrossRefPubMedGoogle Scholar
  94. Zucker-Franklin D, Seremetis S, Zheng ZY (1990) Internalization of human immunodeficiency virus type. Blood 75(10):1920–1923PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • S. Sakinah
    • 1
  • Sharmilah Kumari Kumaran
    • 1
  • Pooi-Ling Mok
    • 2
    • 3
  • Akon Higuchi
    • 4
    • 5
    • 6
  • Giovanni Benelli
    • 7
    • 8
  • S. Suresh Kumar
    • 1
    • 3
  1. 1.Department of Medical Microbiology and ParasitologyUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Biomedical ScienceUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
  4. 4.Department of Chemical and Materials EngineeringNational Central UniversityTaoyuanTaiwan
  5. 5.Department of ReproductionNational Research Institute for Child Health and DevelopmentTokyoJapan
  6. 6.Department of Botany and MicrobiologyKing Saud UniversityRiyadhSaudi Arabia
  7. 7.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
  8. 8.The BioRobotics Institute, Sant’Anna School of Advanced StudiesPisaItaly

Personalised recommendations